DHVT: Dynamic Hybrid Vision Transformer for Small Dataset Recognition

Zhiying Lu;Chuanbin Liu;Xiaojun Chang;Yongdong Zhang;Hongtao Xie
{"title":"DHVT: Dynamic Hybrid Vision Transformer for Small Dataset Recognition","authors":"Zhiying Lu;Chuanbin Liu;Xiaojun Chang;Yongdong Zhang;Hongtao Xie","doi":"10.1109/TPAMI.2025.3528228","DOIUrl":null,"url":null,"abstract":"The performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) persists due to the lack of inductive bias, notably when training from scratch with limited datasets. This paper identifies two crucial shortcomings in ViTs: <italic>spatial relevance</i> and <italic>diverse channel representation</i>. Thus, ViTs struggle to grasp fine-grained spatial features and robust channel representation due to insufficient data. We propose the Dynamic Hybrid Vision Transformer (DHVT) to address these challenges. Regarding the spatial aspect, DHVT introduces convolution in the feature embedding phase and feature projection modules to enhance spatial relevance. Regarding the channel aspect, the dynamic aggregation mechanism and a groundbreaking design “head token” facilitate the recalibration and harmonization of disparate channel representations. Moreover, we investigate the choices of the network meta-structure and adopt the optimal multi-stage hybrid structure without the conventional class token. The methods are then modified with a novel dimensional variable residual connection mechanism to leverage the potential of the structure sufficiently. This updated variant, called DHVT2, offers a more computationally efficient solution for vision-related tasks. DHVT and DHVT2 achieve state-of-the-art image recognition results, effectively bridging the performance gap between CNNs and ViTs. The downstream experiments further demonstrate their strong generalization capacities.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2615-2631"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10836856/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) persists due to the lack of inductive bias, notably when training from scratch with limited datasets. This paper identifies two crucial shortcomings in ViTs: spatial relevance and diverse channel representation. Thus, ViTs struggle to grasp fine-grained spatial features and robust channel representation due to insufficient data. We propose the Dynamic Hybrid Vision Transformer (DHVT) to address these challenges. Regarding the spatial aspect, DHVT introduces convolution in the feature embedding phase and feature projection modules to enhance spatial relevance. Regarding the channel aspect, the dynamic aggregation mechanism and a groundbreaking design “head token” facilitate the recalibration and harmonization of disparate channel representations. Moreover, we investigate the choices of the network meta-structure and adopt the optimal multi-stage hybrid structure without the conventional class token. The methods are then modified with a novel dimensional variable residual connection mechanism to leverage the potential of the structure sufficiently. This updated variant, called DHVT2, offers a more computationally efficient solution for vision-related tasks. DHVT and DHVT2 achieve state-of-the-art image recognition results, effectively bridging the performance gap between CNNs and ViTs. The downstream experiments further demonstrate their strong generalization capacities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DHVT:小数据集识别的动态混合视觉转换器
由于缺乏归纳偏置,视觉变压器(ViTs)和卷积神经网络(cnn)之间的性能差距仍然存在,特别是在使用有限的数据集从零开始训练时。本文指出了ViTs的两个关键缺陷:空间相关性和多样化的信道表示。因此,由于数据不足,ViTs难以把握细粒度的空间特征和鲁棒的信道表示。我们提出动态混合视觉变压器(DHVT)来解决这些挑战。在空间方面,DHVT在特征嵌入阶段引入卷积,在特征投影模块引入卷积,增强空间相关性。在通道方面,动态聚合机制和突破性的设计“头部令牌”促进了不同通道表示的重新校准和协调。此外,我们研究了网络元结构的选择,并采用了最优的多阶段混合结构,而不使用传统的类令牌。然后用一种新的尺寸可变剩余连接机制对方法进行了修改,以充分利用结构的潜力。这个被称为DHVT2的更新版本,为与视觉相关的任务提供了一个计算效率更高的解决方案。DHVT和DHVT2实现了最先进的图像识别结果,有效地弥合了cnn和ViTs之间的性能差距。下游实验进一步证明了其较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GrowSP++: Growing Superpoints and Primitives for Unsupervised 3D Semantic Segmentation. Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1