{"title":"Determining the Recruiting Rate of Spontaneously Blinking Rhodamines by Density Functional Calculations.","authors":"Qinlin Yuan, Mingyue Ma, Mingyu Wang, Pingping Sun, Xingqing Xiao, Weijie Chi","doi":"10.1021/acs.jpca.4c06408","DOIUrl":null,"url":null,"abstract":"<p><p>A recruiting rate (<i>k</i><sub>rc</sub>) of 0.1-5 s<sup>-1</sup> has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate (<i>k</i><sub>rc</sub>) of rhodamines is very important for developing spontaneously blinking rhodamines. However, as far as we know, there is no reliable theoretical method to predict the <i>k</i><sub>rc</sub>. Herein, we meticulously investigated the effect of intermolecular hydrogen bonds on the spirocyclization reactions of rhodamines. Moreover, a theoretical descriptor (Δ<i>E</i><sub>C-T</sub>) was proposed to reliably assess the <i>k</i><sub>rc</sub>. Δ<i>E</i><sub>C-T</sub> quantified the ring-opening energy barrier of spirocyclization reactions. A robust linear correlation was established between theoretical Δ<i>E</i><sub>C-T</sub> values and experimentally <i>k</i><sub>rc</sub> values. Based on this correlation, we designed and screened five spontaneously blinking sulfonamide rhodamine dyes with optimized <i>k</i><sub>rc</sub> values. We expected that these findings could enable the targeted design of spontaneously blinking rhodamines.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06408","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A recruiting rate (krc) of 0.1-5 s-1 has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate (krc) of rhodamines is very important for developing spontaneously blinking rhodamines. However, as far as we know, there is no reliable theoretical method to predict the krc. Herein, we meticulously investigated the effect of intermolecular hydrogen bonds on the spirocyclization reactions of rhodamines. Moreover, a theoretical descriptor (ΔEC-T) was proposed to reliably assess the krc. ΔEC-T quantified the ring-opening energy barrier of spirocyclization reactions. A robust linear correlation was established between theoretical ΔEC-T values and experimentally krc values. Based on this correlation, we designed and screened five spontaneously blinking sulfonamide rhodamine dyes with optimized krc values. We expected that these findings could enable the targeted design of spontaneously blinking rhodamines.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.