Geochemical exploration of rare earth element resources in highland karstic bauxite deposits in the Sierra de Bahoruco, Pedernales Province, Southwestern Dominican Republic.
Mark Chappell, Harold Rojas, Charles Andros, Autumn Acree, Yoko Masue-Slowey, Christine Young, Paige Fowler, Elizabeth Lotufo, Wesley Rowland, Michelle Wynter, Marcelo Salles, Leopoldo Gonzalez
{"title":"Geochemical exploration of rare earth element resources in highland karstic bauxite deposits in the Sierra de Bahoruco, Pedernales Province, Southwestern Dominican Republic.","authors":"Mark Chappell, Harold Rojas, Charles Andros, Autumn Acree, Yoko Masue-Slowey, Christine Young, Paige Fowler, Elizabeth Lotufo, Wesley Rowland, Michelle Wynter, Marcelo Salles, Leopoldo Gonzalez","doi":"10.1371/journal.pone.0315147","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES). We employed compositional data analysis (CoDA) and machine learning models to estimate total REE concentrations, demonstrating that pXRF and the color sensor, when properly calibrated, are effective tools for remote geochemical exploration. The results reveal that REE concentrations increase with depth and elevation, with light REEs (LREEs) dominating the profiles. The correlation of REE concentrations with morphological soil development suggests that higher-altitude areas are enriched in REEs due to progressive weathering processes. The study also shows a strong relationship between REE concentrations and environmental factors such as latitude and elevation. While pXRF provided reliable estimates of total REE concentrations, to our surprise, the NixPro2 color sensor proved similarly accurate. The research emphasizes the practical value of the x-ray and color sensors for remote exploration, provided that a well-explored, robust calibration is performed to account for site-specific variability. These findings contribute to understanding the geochemical distribution of REEs in karstic bauxite deposits and highlight the potential for further exploration in remote, high-altitude regions. Future research should explore using these and other portable sensors, singly or combined, to predict REE speciation, for expediting information related to the environmentally sustainable extractability and potential economic feasibility of resources in expeditionary locations.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0315147"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315147","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES). We employed compositional data analysis (CoDA) and machine learning models to estimate total REE concentrations, demonstrating that pXRF and the color sensor, when properly calibrated, are effective tools for remote geochemical exploration. The results reveal that REE concentrations increase with depth and elevation, with light REEs (LREEs) dominating the profiles. The correlation of REE concentrations with morphological soil development suggests that higher-altitude areas are enriched in REEs due to progressive weathering processes. The study also shows a strong relationship between REE concentrations and environmental factors such as latitude and elevation. While pXRF provided reliable estimates of total REE concentrations, to our surprise, the NixPro2 color sensor proved similarly accurate. The research emphasizes the practical value of the x-ray and color sensors for remote exploration, provided that a well-explored, robust calibration is performed to account for site-specific variability. These findings contribute to understanding the geochemical distribution of REEs in karstic bauxite deposits and highlight the potential for further exploration in remote, high-altitude regions. Future research should explore using these and other portable sensors, singly or combined, to predict REE speciation, for expediting information related to the environmentally sustainable extractability and potential economic feasibility of resources in expeditionary locations.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage