Evaporation Kinetics and Final Particle Morphology of Multicomponent Salt Solution Droplets.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-11 DOI:10.1021/acs.jpca.4c07439
Barnaby E A Miles, Emily Winter, Shaira Mirembe, Daniel Hardy, Lukesh K Mahato, Rachael E H Miles, Jonathan P Reid
{"title":"Evaporation Kinetics and Final Particle Morphology of Multicomponent Salt Solution Droplets.","authors":"Barnaby E A Miles, Emily Winter, Shaira Mirembe, Daniel Hardy, Lukesh K Mahato, Rachael E H Miles, Jonathan P Reid","doi":"10.1021/acs.jpca.4c07439","DOIUrl":null,"url":null,"abstract":"<p><p>In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component. Here we investigate the drying kinetics of NaCl-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, NaCl-NH<sub>4</sub>NO<sub>3</sub>, and NaCl-CaCl<sub>2</sub> mixed salt aqueous aerosol droplets (25-35 μm radius) and the resulting morphology and composition of the dried microparticles. A comparative kinetics electrodynamic balance was used to measure evaporation profiles for each mixed salt aerosol at a range of relative humidities (RH) (0-50% RH); measurements of the evaporation kinetics are shown to be consistent with predictions from the \"Single Aerosol Drying Kinetics and Trajectories\" model. Populations of the mixed salt droplets were dried in a falling droplet column under different RH conditions and imaged using scanning electron microscopy to observe the impact of the drying kinetics on the morphology. Energy dispersive spectroscopy was used in tandem to obtain atomic maps and view the impact of drying kinetics on the composition of the resultant particles. It has been shown that the relationship between drying kinetics and dry particle morphology in mixed salt solution droplets is compositionally dependent and determined by the predominant salts that crystallize (i.e., (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, or NaCl). The degree of homogeneity in composition throughout the particle microstructure is dependent on the drying rate.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07439","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component. Here we investigate the drying kinetics of NaCl-(NH4)2SO4, NaCl-NH4NO3, and NaCl-CaCl2 mixed salt aqueous aerosol droplets (25-35 μm radius) and the resulting morphology and composition of the dried microparticles. A comparative kinetics electrodynamic balance was used to measure evaporation profiles for each mixed salt aerosol at a range of relative humidities (RH) (0-50% RH); measurements of the evaporation kinetics are shown to be consistent with predictions from the "Single Aerosol Drying Kinetics and Trajectories" model. Populations of the mixed salt droplets were dried in a falling droplet column under different RH conditions and imaged using scanning electron microscopy to observe the impact of the drying kinetics on the morphology. Energy dispersive spectroscopy was used in tandem to obtain atomic maps and view the impact of drying kinetics on the composition of the resultant particles. It has been shown that the relationship between drying kinetics and dry particle morphology in mixed salt solution droplets is compositionally dependent and determined by the predominant salts that crystallize (i.e., (NH4)2SO4, Na2SO4, or NaCl). The degree of homogeneity in composition throughout the particle microstructure is dependent on the drying rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
A Graph Neural Network-Based Approach to XANES Data Analysis. Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks. Investigation of the Gas-Phase N2+ + CH3CN Reaction at Low Temperatures. Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides. Vibronic Coupling and Multiple Electronic States Effect in ABS and ECD Spectra: Three [7]Helicene Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1