Mi Jang, Jihye Yang, Dae-Hyun Jeon, Sang Heon Seung, Gene Lee
{"title":"Potential of human dental pulp stem cell-derived conditioned medium for amelo-/odontoblastic differentiation of HERS/ERM cells","authors":"Mi Jang, Jihye Yang, Dae-Hyun Jeon, Sang Heon Seung, Gene Lee","doi":"10.1016/j.bbrc.2025.151490","DOIUrl":null,"url":null,"abstract":"<div><div>HERS/ERM cells constitute the only dental epithelial population that can be isolated from adult human teeth. Although HERS/ERM cells are the most studied dental epithelial cell source, information on their differentiation is lacking: these cells have a long induction period and low mineralization without coculture with dental mesenchymal stem cells. To characterize and develop an effective method for differentiating dental epithelial cells, we observed the epithelial‒mesenchymal interaction effects of deciduous dental pulp stem cell (dDPSC)-derived conditioned media (CM) during HERS/ERM cell differentiation. The collected CM was freeze-dried (DCM) and applied at high concentrations to determine the optimal concentration. The DCM-20 %, DCM-40 %, DCM-60 %, and DCM-80 % (<em>v</em>/<em>v</em>) groups presented an increased growth pattern. On day 2, increased expression of <em>AMELX</em> was detected in the DCM-60 % and DCM-80 % groups. <em>ENAM</em> expression was increased in the DCM-80 % group on day 2 and in the DCM-treated groups on day 4. In the DCM-80 % group, <em>DSPP</em> expression was significantly increased. In the DCM-60 % and DCM-80 % groups, high DSPP expression was detected. The ENAM expression in the DCM-80 % group was higher than that in the other groups. Mineralized nodules were detected on day 8 in the DCM-40 %, DCM-60 %, and DCM-80 % groups. The amount of calcium deposits increased with increasing DCM concentration. Our data indicated that dDPSC-CM has significant potential to induce ameloblastic and odontoblastic differentiation in HERS/ERM cells. The paracrine factors of dDPSC-CM could induce ameloblast differentiation without direct cell-to-cell interactions. These findings emphasize the potential of dDPSC-CM in the differentiation of HERS/ERM cells in vitro.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"752 ","pages":"Article 151490"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HERS/ERM cells constitute the only dental epithelial population that can be isolated from adult human teeth. Although HERS/ERM cells are the most studied dental epithelial cell source, information on their differentiation is lacking: these cells have a long induction period and low mineralization without coculture with dental mesenchymal stem cells. To characterize and develop an effective method for differentiating dental epithelial cells, we observed the epithelial‒mesenchymal interaction effects of deciduous dental pulp stem cell (dDPSC)-derived conditioned media (CM) during HERS/ERM cell differentiation. The collected CM was freeze-dried (DCM) and applied at high concentrations to determine the optimal concentration. The DCM-20 %, DCM-40 %, DCM-60 %, and DCM-80 % (v/v) groups presented an increased growth pattern. On day 2, increased expression of AMELX was detected in the DCM-60 % and DCM-80 % groups. ENAM expression was increased in the DCM-80 % group on day 2 and in the DCM-treated groups on day 4. In the DCM-80 % group, DSPP expression was significantly increased. In the DCM-60 % and DCM-80 % groups, high DSPP expression was detected. The ENAM expression in the DCM-80 % group was higher than that in the other groups. Mineralized nodules were detected on day 8 in the DCM-40 %, DCM-60 %, and DCM-80 % groups. The amount of calcium deposits increased with increasing DCM concentration. Our data indicated that dDPSC-CM has significant potential to induce ameloblastic and odontoblastic differentiation in HERS/ERM cells. The paracrine factors of dDPSC-CM could induce ameloblast differentiation without direct cell-to-cell interactions. These findings emphasize the potential of dDPSC-CM in the differentiation of HERS/ERM cells in vitro.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics