Tahlia I Pollock, William J Deakin, Narimane Chatar, Pablo S Milla Carmona, Douglass S Rovinsky, Olga Panagiotopoulou, William M G Parker, Justin W Adams, David P Hocking, Philip C J Donoghue, Emily J Rayfield, Alistair R Evans
{"title":"Functional optimality underpins the repeated evolution of the extreme \"saber-tooth\" morphology.","authors":"Tahlia I Pollock, William J Deakin, Narimane Chatar, Pablo S Milla Carmona, Douglass S Rovinsky, Olga Panagiotopoulou, William M G Parker, Justin W Adams, David P Hocking, Philip C J Donoghue, Emily J Rayfield, Alistair R Evans","doi":"10.1016/j.cub.2024.11.059","DOIUrl":null,"url":null,"abstract":"<p><p>\"Saber teeth\"-elongate, blade-like canines-are a classic example of convergence, having evolved repeatedly throughout mammalian history. Within canine teeth, there is a trade-off between the aspects of shape that improve food fracture and those that increase tooth strength. Optimal morphologies strike a balance between these antagonistic functional criteria. The extreme saber-tooth morphology is thought to confer functional advantage for more specialized predatory adaptations and optimization; however, the adaptive bases underpinning their evolution remain unclear. To determine whether saber-tooth shape reflects selection for functionally optimal morphologies, we generated a morphospace of the 3D shape of 70 non-saber and 25 saber-tooth species, a subset of which were used to quantify functional metrics of puncture performance and breakage resistance. These data were combined using a Pareto rank-ratio algorithm to evaluate optimality. We demonstrate that extreme saber-tooth morphologies are functionally optimal, occupying a localized peak in our optimality landscape. Unlike other optimal canine morphologies, extreme saber teeth optimize puncture performance at the expense of breakage resistance. This identifies functional optimality as a key driver underpinning the repeated evolution of this iconic tooth.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.059","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
"Saber teeth"-elongate, blade-like canines-are a classic example of convergence, having evolved repeatedly throughout mammalian history. Within canine teeth, there is a trade-off between the aspects of shape that improve food fracture and those that increase tooth strength. Optimal morphologies strike a balance between these antagonistic functional criteria. The extreme saber-tooth morphology is thought to confer functional advantage for more specialized predatory adaptations and optimization; however, the adaptive bases underpinning their evolution remain unclear. To determine whether saber-tooth shape reflects selection for functionally optimal morphologies, we generated a morphospace of the 3D shape of 70 non-saber and 25 saber-tooth species, a subset of which were used to quantify functional metrics of puncture performance and breakage resistance. These data were combined using a Pareto rank-ratio algorithm to evaluate optimality. We demonstrate that extreme saber-tooth morphologies are functionally optimal, occupying a localized peak in our optimality landscape. Unlike other optimal canine morphologies, extreme saber teeth optimize puncture performance at the expense of breakage resistance. This identifies functional optimality as a key driver underpinning the repeated evolution of this iconic tooth.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.