Daniel Kolbin, Maëlle Locatelli, John Stanton, Katie Kesselman, Aryan Kokkanti, Jinghan Li, Elaine Yeh, Kerry Bloom
{"title":"Centromeres are stress-induced fragile sites.","authors":"Daniel Kolbin, Maëlle Locatelli, John Stanton, Katie Kesselman, Aryan Kokkanti, Jinghan Li, Elaine Yeh, Kerry Bloom","doi":"10.1016/j.cub.2025.01.055","DOIUrl":null,"url":null,"abstract":"<p><p>Centromeres are unique loci on eukaryotic chromosomes and are complexed with centromere-specific histone H3 molecules (CENP-A in mammals, Cse4 in yeast). The centromere provides the binding site for the kinetochore that captures microtubules and provides the mechanical linkage required for chromosome segregation. Centromeres encounter fluctuations in force as chromosomes jockey for position on the metaphase spindle. We have developed biological assays to examine the response of centromeres to high force. Torsional stress is induced on covalently closed DNA circles from supercoiling. Plasmid-borne centromeres with single-nucleotide inactivating mutations exhibit a high conversion frequency to plasmid dimer species. Conversion to dimers is dependent on the activity of the Rad1 single-strand endonuclease, indicative of unwinding a region of the centromere sequence in the absence of a functional kinetochore. To determine the region of unwinding, we used conditionally functional dicentric chromosomes to exert tension. Centromere DNA is exquisitely sensitive to cleavage following activation of the dicentric chromosome. Cleavage is dependent on the action of Rad1, highlighting the propensity of centromeres to unwind in response to supercoiling or mechanical stress. These studies provide mechanistic insights into the evolution of AT-rich pericentromere DNA throughout phylogeny and suggest a mechanism for stress-induced error correction at the centromere.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.01.055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Centromeres are unique loci on eukaryotic chromosomes and are complexed with centromere-specific histone H3 molecules (CENP-A in mammals, Cse4 in yeast). The centromere provides the binding site for the kinetochore that captures microtubules and provides the mechanical linkage required for chromosome segregation. Centromeres encounter fluctuations in force as chromosomes jockey for position on the metaphase spindle. We have developed biological assays to examine the response of centromeres to high force. Torsional stress is induced on covalently closed DNA circles from supercoiling. Plasmid-borne centromeres with single-nucleotide inactivating mutations exhibit a high conversion frequency to plasmid dimer species. Conversion to dimers is dependent on the activity of the Rad1 single-strand endonuclease, indicative of unwinding a region of the centromere sequence in the absence of a functional kinetochore. To determine the region of unwinding, we used conditionally functional dicentric chromosomes to exert tension. Centromere DNA is exquisitely sensitive to cleavage following activation of the dicentric chromosome. Cleavage is dependent on the action of Rad1, highlighting the propensity of centromeres to unwind in response to supercoiling or mechanical stress. These studies provide mechanistic insights into the evolution of AT-rich pericentromere DNA throughout phylogeny and suggest a mechanism for stress-induced error correction at the centromere.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.