Sara Hedayati, Mohammad Tarahi, Arghavan Madani, Seyed Mohammad Mazloomi, Mohammad Hashem Hashempur
{"title":"Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender (<i>Lavandula</i> spp.) Essential Oil.","authors":"Sara Hedayati, Mohammad Tarahi, Arghavan Madani, Seyed Mohammad Mazloomi, Mohammad Hashem Hashempur","doi":"10.3390/foods14010100","DOIUrl":null,"url":null,"abstract":"<p><p>Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.g., steam distillation (SD) and hydro-distillation (HD), have been traditionally employed to extract LEO. However, the low yield, high energy consumption, and long extraction time of conventional methods have prompted the introduction of novel extraction technologies. Some of these innovative approaches, such as ohmic-assisted, microwave-assisted, supercritical fluid, and subcritical water extraction approaches, are used as substitutes to conventional extraction methods. While other methods, e.g., sonication, pulsed electric field, and cold plasma, can be used as a pre-treatment that is preceded by conventional or emerging extraction technologies. These innovative approaches have a great significance in reducing the energy consumption, shortening the extraction time, and increasing the extraction yield and the quality of EOs. Therefore, they can be considered as sustainable extraction technologies. However, the scale-up of emerging technologies to an industrial level should also be investigated from the techno-economic points of view in future studies.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14010100","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.g., steam distillation (SD) and hydro-distillation (HD), have been traditionally employed to extract LEO. However, the low yield, high energy consumption, and long extraction time of conventional methods have prompted the introduction of novel extraction technologies. Some of these innovative approaches, such as ohmic-assisted, microwave-assisted, supercritical fluid, and subcritical water extraction approaches, are used as substitutes to conventional extraction methods. While other methods, e.g., sonication, pulsed electric field, and cold plasma, can be used as a pre-treatment that is preceded by conventional or emerging extraction technologies. These innovative approaches have a great significance in reducing the energy consumption, shortening the extraction time, and increasing the extraction yield and the quality of EOs. Therefore, they can be considered as sustainable extraction technologies. However, the scale-up of emerging technologies to an industrial level should also be investigated from the techno-economic points of view in future studies.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds