Jing Yang, Zihan Li, Xinping Lin, Sufang Zhang, Chaofan Ji
{"title":"Impact of Enzyme-Microbe Combined Fermentation on the Safety and Quality of Soy Paste Fermented with Grass Carp By-Products.","authors":"Jing Yang, Zihan Li, Xinping Lin, Sufang Zhang, Chaofan Ji","doi":"10.3390/foods14010106","DOIUrl":null,"url":null,"abstract":"<p><p>Freshwater fish processing produces 30-70% nutrient-rich by-products, often discarded or undervalued. Grass carp by-products, rich in protein, offer potential as raw materials for fermented seasonings. This study explores the use of these by-products-specifically, minced fish and fish skin-in soybean fermentation to evaluate their effects on the quality of the resulting seasonings. <i>Tetragenococcus halophilus</i> was used as a starter culture alongside food-grade protease to assess their combined impact on the safety and flavor of soy fish paste and soy fish skin paste. The findings revealed that natural fermentation resulted in higher protein hydrolysis in soy fish skin paste compared to soy fish paste. Across all fermentation conditions, amino acid nitrogen levels increased, while total volatile basic nitrogen levels decreased in both pastes, indicating improved quality. Additionally, microbial fermentation significantly reduced biogenic amine content in soy fish paste, enhancing safety. Enzymatic fermentation further enriched the flavor of both pastes by boosting key compounds such as 2-methylbutanal and ethyl acetate. Notably, enzyme-microbe co-fermentation harnessed the strengths of both methods, achieving improved safety and enhanced flavor profiles while elevating overall product quality. These findings suggest a promising way to transform freshwater fish by-products into high-value condiments, advancing sustainable food processing.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14010106","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater fish processing produces 30-70% nutrient-rich by-products, often discarded or undervalued. Grass carp by-products, rich in protein, offer potential as raw materials for fermented seasonings. This study explores the use of these by-products-specifically, minced fish and fish skin-in soybean fermentation to evaluate their effects on the quality of the resulting seasonings. Tetragenococcus halophilus was used as a starter culture alongside food-grade protease to assess their combined impact on the safety and flavor of soy fish paste and soy fish skin paste. The findings revealed that natural fermentation resulted in higher protein hydrolysis in soy fish skin paste compared to soy fish paste. Across all fermentation conditions, amino acid nitrogen levels increased, while total volatile basic nitrogen levels decreased in both pastes, indicating improved quality. Additionally, microbial fermentation significantly reduced biogenic amine content in soy fish paste, enhancing safety. Enzymatic fermentation further enriched the flavor of both pastes by boosting key compounds such as 2-methylbutanal and ethyl acetate. Notably, enzyme-microbe co-fermentation harnessed the strengths of both methods, achieving improved safety and enhanced flavor profiles while elevating overall product quality. These findings suggest a promising way to transform freshwater fish by-products into high-value condiments, advancing sustainable food processing.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds