Convergence analysis of deep Ritz method with over-parameterization.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-04 DOI:10.1016/j.neunet.2024.107110
Zhao Ding, Yuling Jiao, Xiliang Lu, Peiying Wu, Jerry Zhijian Yang
{"title":"Convergence analysis of deep Ritz method with over-parameterization.","authors":"Zhao Ding, Yuling Jiao, Xiliang Lu, Peiying Wu, Jerry Zhijian Yang","doi":"10.1016/j.neunet.2024.107110","DOIUrl":null,"url":null,"abstract":"<p><p>The deep Ritz method (DRM) has recently been shown to be a simple and effective method for solving PDEs. However, the numerical analysis of DRM is still incomplete, especially why over-parameterized DRM works remains unknown. This paper presents the first convergence analysis of the over-parameterized DRM for second-order elliptic equations with Robin boundary conditions. We demonstrate that the convergence rate can be controlled by the weight norm, regardless of the number of parameters in the network. To this end, we establish novel approximation results in Sobolev spaces with norm constraints, which have independent significance.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107110"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107110","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The deep Ritz method (DRM) has recently been shown to be a simple and effective method for solving PDEs. However, the numerical analysis of DRM is still incomplete, especially why over-parameterized DRM works remains unknown. This paper presents the first convergence analysis of the over-parameterized DRM for second-order elliptic equations with Robin boundary conditions. We demonstrate that the convergence rate can be controlled by the weight norm, regardless of the number of parameters in the network. To this end, we establish novel approximation results in Sobolev spaces with norm constraints, which have independent significance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带过参数化的深Ritz方法的收敛性分析。
深里兹法(deep Ritz method, DRM)是求解偏微分方程的一种简单有效的方法。然而,对DRM的数值分析还不完整,特别是对过度参数化DRM为何有效的问题仍不清楚。本文给出了具有Robin边界条件的二阶椭圆方程的过参数化DRM的第一次收敛性分析。我们证明了无论网络中参数的数量如何,收敛速度都可以由权范数控制。为此,我们在具有范数约束的Sobolev空间中建立了新的具有独立意义的近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1