{"title":"Toward improved auricle reconstruction: The role of FDM 3D printing with PCL and TPU materials","authors":"Elena Capotorto , Licia Chiudaroli , Edoardo Montrasio , Liebert Parreiras Nogueira , Matteo Pitton , Håvard Jostein Haugen , Giada Beltramini , Silvia Farè","doi":"10.1016/j.bioadv.2025.214175","DOIUrl":null,"url":null,"abstract":"<div><div>Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient. The scaffold was printed using polycaprolactone (PCL) and thermoplastic polyether urethane (TPU) to mimic the components of the cartilage and adipose tissue, respectively. After the optimization of the printing parameters, the 3D surface obtained as an output of the laser scan was elaborated, sliced and used as input for printing the layered structure. Micro CT investigation confirmed the structure homogeneity and good pore interconnection. Mechanical compression and torsion tests were performed to verify that the mechanical properties of the 3D PCL/TPU structure were adequate. The 3D structure exhibited elastic modulus<del>es</del> comparable to those of the cartilaginous and adipose parts of the auricle. The torsion tests showed the adequacy of the structure without detachment between TPU and PCL printed layers. In vitro cell viability tests confirmed the absence of cytotoxicity in both materials. The PCL/TPU layered scaffold reproduced the anatomy of the patient's healthy contralateral ear, representing a good compromise between flexibility and strength. This, along with the other assessed properties, makes this scaffold a valid alternative for the reconstruction of the external ear.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214175"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient. The scaffold was printed using polycaprolactone (PCL) and thermoplastic polyether urethane (TPU) to mimic the components of the cartilage and adipose tissue, respectively. After the optimization of the printing parameters, the 3D surface obtained as an output of the laser scan was elaborated, sliced and used as input for printing the layered structure. Micro CT investigation confirmed the structure homogeneity and good pore interconnection. Mechanical compression and torsion tests were performed to verify that the mechanical properties of the 3D PCL/TPU structure were adequate. The 3D structure exhibited elastic moduluses comparable to those of the cartilaginous and adipose parts of the auricle. The torsion tests showed the adequacy of the structure without detachment between TPU and PCL printed layers. In vitro cell viability tests confirmed the absence of cytotoxicity in both materials. The PCL/TPU layered scaffold reproduced the anatomy of the patient's healthy contralateral ear, representing a good compromise between flexibility and strength. This, along with the other assessed properties, makes this scaffold a valid alternative for the reconstruction of the external ear.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!