Modeling of comet water production

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-01-10 DOI:10.1051/0004-6361/202452109
Y. Xin, Yu. Skorov, Y. Zhao, L. Rezac, P. Hartogh, M. Küppers
{"title":"Modeling of comet water production","authors":"Y. Xin, Yu. Skorov, Y. Zhao, L. Rezac, P. Hartogh, M. Küppers","doi":"10.1051/0004-6361/202452109","DOIUrl":null,"url":null,"abstract":"<i>Aims<i/>. This study investigates the impact of microscopic and macroscopic cometary surface properties on water production variations with heliocentric distance, focusing on dust layer thickness, grain size, nucleus shape, and spin axis orientation.<i>Methods<i/>. We employed a two-layer thermophysical model to calculate effective gas production, incorporating a dust layer of porous aggregates of submillimeter- and millimeter-sized grains. The model includes radiative thermal conductivity and permeability for volatile diffusion and considers dust layer evolution and tensile strength. We examined different cometary nucleus shape models based on spacecraft observations and calculated power-law exponents for water production rates as functions of heliocentric distance.<i>Results<i/>. A two-layer outgassing model with fixed layer properties showed minimal qualitative differences from a simpler water ice sublimation model. The study reaffirms the critical role of the spin axis inclination and illuminated cross-section variation with the heliocentric distance in gas production. Using 67P/Churyumov-Gerasimenko’s orbital parameters, the study demonstrates that dust accumulation and layer growth significantly alter production rate exponents. Additionally, considering tensile strength in a homogeneous spherical nucleus model revealed the potential for local dust crust removal near perihelion.<i>Conclusions<i/>. Macroscopic properties such as nucleus shape and spin axis orientation significantly influence water production rate variations with heliocentric distance. Microscopic surface characteristics and dust layer growth also play crucial roles in cometary activity. Incorporating tensile strength and dust removal mechanisms into models provides a more accurate representation of comet activity, particularly near perihelion. This refined model enhances our understanding of comet outgassing, highlighting the importance of detailed surface property data for an accurate interpretation of observations.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"89 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452109","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims. This study investigates the impact of microscopic and macroscopic cometary surface properties on water production variations with heliocentric distance, focusing on dust layer thickness, grain size, nucleus shape, and spin axis orientation.Methods. We employed a two-layer thermophysical model to calculate effective gas production, incorporating a dust layer of porous aggregates of submillimeter- and millimeter-sized grains. The model includes radiative thermal conductivity and permeability for volatile diffusion and considers dust layer evolution and tensile strength. We examined different cometary nucleus shape models based on spacecraft observations and calculated power-law exponents for water production rates as functions of heliocentric distance.Results. A two-layer outgassing model with fixed layer properties showed minimal qualitative differences from a simpler water ice sublimation model. The study reaffirms the critical role of the spin axis inclination and illuminated cross-section variation with the heliocentric distance in gas production. Using 67P/Churyumov-Gerasimenko’s orbital parameters, the study demonstrates that dust accumulation and layer growth significantly alter production rate exponents. Additionally, considering tensile strength in a homogeneous spherical nucleus model revealed the potential for local dust crust removal near perihelion.Conclusions. Macroscopic properties such as nucleus shape and spin axis orientation significantly influence water production rate variations with heliocentric distance. Microscopic surface characteristics and dust layer growth also play crucial roles in cometary activity. Incorporating tensile strength and dust removal mechanisms into models provides a more accurate representation of comet activity, particularly near perihelion. This refined model enhances our understanding of comet outgassing, highlighting the importance of detailed surface property data for an accurate interpretation of observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1