Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2025-01-13 DOI:10.1038/s41560-024-01694-5
Ao Wang, Jialin Cong, Shujie Zhou, Jialiang Huang, Jingwen Cao, Xin Cui, Xiaojie Yuan, Yin Yao, Zhou Xu, Guojun He, Jefferson Zhe Liu, Julie M. Cairney, Yi-sheng Chen, Martin A. Green, Su-Huai Wei, Kaiwen Sun, Xiaojing Hao
{"title":"Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency","authors":"Ao Wang, Jialin Cong, Shujie Zhou, Jialiang Huang, Jingwen Cao, Xin Cui, Xiaojie Yuan, Yin Yao, Zhou Xu, Guojun He, Jefferson Zhe Liu, Julie M. Cairney, Yi-sheng Chen, Martin A. Green, Su-Huai Wei, Kaiwen Sun, Xiaojing Hao","doi":"10.1038/s41560-024-01694-5","DOIUrl":null,"url":null,"abstract":"<p>Wide-bandgap kesterite Cu<sub>2</sub>ZnSnS<sub>4</sub> offers an economically viable, sustainably sourced and environmentally friendly material for both single-junction and tandem photovoltaic applications. Nevertheless, since 2018 the record efficiency of such solar cells has stagnated at 11%, largely due to carriers recombining before they are collected. Here we demonstrate enhanced carrier collection in devices annealed in a hydrogen-containing atmosphere. We find that hydrogen is incorporated mainly in n-type layers and on the absorber surface. Furthermore, we show that the hydrogen treatment triggers the out-diffusion of oxygen and sodium from the absorber bulk to the surface, favourably diminishing the acceptor concentration at the surface and increasing the p-type doping in the bulk. Consequently, Fermi-level pinning is relieved and carrier transport in the absorber is facilitated. We achieve a certified efficiency of 11.4% in Cd-free devices. Although hydrogenation already plays a major role in silicon photovoltaics, our findings can further advance its application in emerging photovoltaic technologies.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"6 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01694-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wide-bandgap kesterite Cu2ZnSnS4 offers an economically viable, sustainably sourced and environmentally friendly material for both single-junction and tandem photovoltaic applications. Nevertheless, since 2018 the record efficiency of such solar cells has stagnated at 11%, largely due to carriers recombining before they are collected. Here we demonstrate enhanced carrier collection in devices annealed in a hydrogen-containing atmosphere. We find that hydrogen is incorporated mainly in n-type layers and on the absorber surface. Furthermore, we show that the hydrogen treatment triggers the out-diffusion of oxygen and sodium from the absorber bulk to the surface, favourably diminishing the acceptor concentration at the surface and increasing the p-type doping in the bulk. Consequently, Fermi-level pinning is relieved and carrier transport in the absorber is facilitated. We achieve a certified efficiency of 11.4% in Cd-free devices. Although hydrogenation already plays a major role in silicon photovoltaics, our findings can further advance its application in emerging photovoltaic technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Lessons from wholesale market success for system service procurement design in high renewable electricity markets An adjusted strategy is needed to ground green hydrogen expectations in reality Electron spin matters The green hydrogen ambition and implementation gap Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1