Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-01-13 DOI:10.1021/acschemneuro.4c00429
Chanting He, Qian Hu, Congying Liu, Yafen Chu, Jingjing Jia, Xiaoyan Zhang, Qiao Niu
{"title":"Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.","authors":"Chanting He, Qian Hu, Congying Liu, Yafen Chu, Jingjing Jia, Xiaoyan Zhang, Qiao Niu","doi":"10.1021/acschemneuro.4c00429","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)<sub>3</sub>], respectively. They were intraperitoneally injected every other day for three months. PC12 cells were divided into four dose groups: 0, 100, 200, and 400 μmol/L Al(mal)<sub>3</sub>, and four intervention groups: inhibitor NC, Al(mal)<sub>3</sub> + inhibitor NC, miR-98-5p inhibitor, and Al(mal)<sub>3</sub> + miR-98-5p inhibitor. The Morris water maze was used to test the learning and memory abilities of rats. Hematoxylin and eosin staining was used to observe the arrangement and quantity of neurons in the CA1 area of the rat hippocampus. Cell viability was detected using the Cell Counting Kit-8. Cell apoptosis was detected using flow cytometry and the 5-ethynyl-2'-deoxyuridine assay. Real-time polymerase chain reaction and Western blotting were used to detect the expression levels of miR-98-5p, IGF2 mRNA, IGF2/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway proteins, and apoptosis-related proteins caspase3 and cleaved caspase3. The dual-luciferase assay was used to determine the targeting relationship between miR-98-5p and IGF2 mRNA. As the dose of aluminum exposure increased, the escape latency of rats gradually prolonged, and the target quadrant residence time and the number of crossing platforms gradually decreased. The arrangement of neurons in the hippocampal CA1 area was significantly loose, and their number gradually decreased. The total and early apoptosis rates of PC12 cells gradually increased, and the cell proliferation rate slowed down. Both in vivo and in vitro experimental results showed that with the increase of aluminum exposure dose, the relative expression levels of miR-98-5p and caspase3 and cleaved caspase3 proteins gradually increased, while the relative expression levels of IGF2 mRNA and IGF2, p-JAK2 (Tyr1007/1008), and p-STAT3 (Tyr705) proteins gradually decreased. After inhibiting miR-98-5p in the aluminum exposure group, the cell apoptosis rate and expression of apoptosis-related proteins decreased, and the expression of IGF2 mRNA and IGF2/JAK2/STAT3 proteins increased. These results indicate that miR-98-5p plays a vital role in aluminum-induced neurotoxicity by targeting IGF2.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00429","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)3], respectively. They were intraperitoneally injected every other day for three months. PC12 cells were divided into four dose groups: 0, 100, 200, and 400 μmol/L Al(mal)3, and four intervention groups: inhibitor NC, Al(mal)3 + inhibitor NC, miR-98-5p inhibitor, and Al(mal)3 + miR-98-5p inhibitor. The Morris water maze was used to test the learning and memory abilities of rats. Hematoxylin and eosin staining was used to observe the arrangement and quantity of neurons in the CA1 area of the rat hippocampus. Cell viability was detected using the Cell Counting Kit-8. Cell apoptosis was detected using flow cytometry and the 5-ethynyl-2'-deoxyuridine assay. Real-time polymerase chain reaction and Western blotting were used to detect the expression levels of miR-98-5p, IGF2 mRNA, IGF2/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway proteins, and apoptosis-related proteins caspase3 and cleaved caspase3. The dual-luciferase assay was used to determine the targeting relationship between miR-98-5p and IGF2 mRNA. As the dose of aluminum exposure increased, the escape latency of rats gradually prolonged, and the target quadrant residence time and the number of crossing platforms gradually decreased. The arrangement of neurons in the hippocampal CA1 area was significantly loose, and their number gradually decreased. The total and early apoptosis rates of PC12 cells gradually increased, and the cell proliferation rate slowed down. Both in vivo and in vitro experimental results showed that with the increase of aluminum exposure dose, the relative expression levels of miR-98-5p and caspase3 and cleaved caspase3 proteins gradually increased, while the relative expression levels of IGF2 mRNA and IGF2, p-JAK2 (Tyr1007/1008), and p-STAT3 (Tyr705) proteins gradually decreased. After inhibiting miR-98-5p in the aluminum exposure group, the cell apoptosis rate and expression of apoptosis-related proteins decreased, and the expression of IGF2 mRNA and IGF2/JAK2/STAT3 proteins increased. These results indicate that miR-98-5p plays a vital role in aluminum-induced neurotoxicity by targeting IGF2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis. Optical Precise Ablation of Targeted Individual Neurons In Vivo. Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice. Computational Analysis of CC2D1A Missense Mutations: Insight into Protein Structure and Interaction Dynamics. Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1