Machine learning-based blood pressure estimation using impedance cardiography data.

IF 5.6 2区 医学 Q1 PHYSIOLOGY Acta Physiologica Pub Date : 2025-02-01 DOI:10.1111/apha.14269
T L Bothe, A Patzak, O S Opatz, V Heinz, N Pilz
{"title":"Machine learning-based blood pressure estimation using impedance cardiography data.","authors":"T L Bothe, A Patzak, O S Opatz, V Heinz, N Pilz","doi":"10.1111/apha.14269","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate blood pressure (BP) measurement is crucial for the diagnosis, risk assessment, treatment decision-making, and monitoring of cardiovascular diseases. Unfortunately, cuff-based BP measurements suffer from inaccuracies and discomfort. This study is the first to access the feasibility of machine learning-based BP estimation using impedance cardiography (ICG) data.</p><p><strong>Methods: </strong>We analyzed ICG data from 71 young and healthy adults. Nine different machine learning algorithms were evaluated for their BP estimation performance against quality controlled, oscillometric (cuff-based), arterial BP measurements during mental (Trier social stress test), and physical exercise (bike ergometer). Models were optimized to minimize the root mean squared error and their performance was evaluated against accuracy and regression metrics.</p><p><strong>Results: </strong>The multi-linear regression model demonstrated the highest measurement accuracy for systolic BP with a mean difference of -0.01 mmHg, a standard deviation (SD) of 10.79 mmHg, a mean absolute error (MAE) of 8.20 mmHg, and a correlation coefficient of r = 0.82. In contrast, the support vector regression model achieved the highest accuracy for diastolic BP with a mean difference of 0.15 mmHg, SD = 7.79 mmHg, MEA = 6.05 mmHg, and a correlation coefficient of r = 0.51.</p><p><strong>Conclusion: </strong>The study demonstrates the feasibility of ICG-based machine learning algorithms for estimating cuff-based reference BP. However, further research into limiting biases, improving performance, and standardized validation is needed before clinical use.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 2","pages":"e14269"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/apha.14269","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Accurate blood pressure (BP) measurement is crucial for the diagnosis, risk assessment, treatment decision-making, and monitoring of cardiovascular diseases. Unfortunately, cuff-based BP measurements suffer from inaccuracies and discomfort. This study is the first to access the feasibility of machine learning-based BP estimation using impedance cardiography (ICG) data.

Methods: We analyzed ICG data from 71 young and healthy adults. Nine different machine learning algorithms were evaluated for their BP estimation performance against quality controlled, oscillometric (cuff-based), arterial BP measurements during mental (Trier social stress test), and physical exercise (bike ergometer). Models were optimized to minimize the root mean squared error and their performance was evaluated against accuracy and regression metrics.

Results: The multi-linear regression model demonstrated the highest measurement accuracy for systolic BP with a mean difference of -0.01 mmHg, a standard deviation (SD) of 10.79 mmHg, a mean absolute error (MAE) of 8.20 mmHg, and a correlation coefficient of r = 0.82. In contrast, the support vector regression model achieved the highest accuracy for diastolic BP with a mean difference of 0.15 mmHg, SD = 7.79 mmHg, MEA = 6.05 mmHg, and a correlation coefficient of r = 0.51.

Conclusion: The study demonstrates the feasibility of ICG-based machine learning algorithms for estimating cuff-based reference BP. However, further research into limiting biases, improving performance, and standardized validation is needed before clinical use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用阻抗心动图数据进行基于机器学习的血压估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
期刊最新文献
Proteinuria and tubular cells: Plasticity and toxicity. The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism. IgE and cardiac disease. Left superior cervical ganglia lymph node mimicry and its role in rat ventricular arrhythmias following myocardial infarction. Machine learning-based blood pressure estimation using impedance cardiography data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1