{"title":"The latest applications of exosome-mediated drug delivery in anticancer therapies","authors":"Zhiwei Wen , Wei Zhang , Wei Wu","doi":"10.1016/j.colsurfb.2025.114500","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the significant role of anticancer drugs in cancer treatment has garnered considerable attention. However, the application of these drugs is largely limited by their short half-life in blood circulation, low cellular uptake efficiency, and off-target effects. Exosomes, which serve as crucial messengers in intercellular communication, exhibit unique advantages in molecular delivery compared to traditional synthetic carriers, thereby offering new possibilities for modern drug delivery systems. Exosomes possess organotropic functions and are naturally produced by cells, making them promising candidates for natural drug delivery systems with organotropic properties and minimal side effects. These naturally derived carriers can achieve stable, efficient, and selective delivery of anticancer drugs, thereby enhancing the efficacy and potential of anticancer agents in cancer immunotherapy. This review provides a concise overview of the unique characteristics of exosomes related to anticancer drug delivery, strategies for utilizing exosomes as carriers in cancer therapy, and the latest advancements in the field.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"249 ","pages":"Article 114500"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the significant role of anticancer drugs in cancer treatment has garnered considerable attention. However, the application of these drugs is largely limited by their short half-life in blood circulation, low cellular uptake efficiency, and off-target effects. Exosomes, which serve as crucial messengers in intercellular communication, exhibit unique advantages in molecular delivery compared to traditional synthetic carriers, thereby offering new possibilities for modern drug delivery systems. Exosomes possess organotropic functions and are naturally produced by cells, making them promising candidates for natural drug delivery systems with organotropic properties and minimal side effects. These naturally derived carriers can achieve stable, efficient, and selective delivery of anticancer drugs, thereby enhancing the efficacy and potential of anticancer agents in cancer immunotherapy. This review provides a concise overview of the unique characteristics of exosomes related to anticancer drug delivery, strategies for utilizing exosomes as carriers in cancer therapy, and the latest advancements in the field.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.