{"title":"Construction of hyaluronic acid/ZnO nanocubes and their pH-responsive stability in drug delivery","authors":"Xueqing Li , Yulong Yan , Xubo Zhao","doi":"10.1016/j.colsurfb.2025.114632","DOIUrl":null,"url":null,"abstract":"<div><div>Hyaluronic acid (HA), a naturally occurring polysaccharide, is extensively utilized in the biomedical field owing to its excellent biocompatibility. However, assembling HA directly into nanomaterials with tunable stability remains challenging, primarily due to its hydrophilic nature. In this study, we introduce a novel method for inducing HA assembly through in-situ formation of ZnO nanoparticles to develop HA-based nanomaterials, specifically HA/ZnO nanocubes (HA/ZnO NCs). Following doxorubicin (DOX) loading, the DOX-loaded HA/ZnO NCs exhibit remarkable structural stability under normal physiological conditions and demonstrate acid-responsive dissociation within the tumor microenvironment. In vitro results confirm that HA/ZnO NCs possess excellent biocompatibility, while the DOX-loaded HA/ZnO NCs effectively inhibit tumor cell viability. Consequently, the integration of HA and ZnO represents a promising strategy for enhancing HA-based drug delivery systems (DDSs).</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"251 ","pages":"Article 114632"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001390","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide, is extensively utilized in the biomedical field owing to its excellent biocompatibility. However, assembling HA directly into nanomaterials with tunable stability remains challenging, primarily due to its hydrophilic nature. In this study, we introduce a novel method for inducing HA assembly through in-situ formation of ZnO nanoparticles to develop HA-based nanomaterials, specifically HA/ZnO nanocubes (HA/ZnO NCs). Following doxorubicin (DOX) loading, the DOX-loaded HA/ZnO NCs exhibit remarkable structural stability under normal physiological conditions and demonstrate acid-responsive dissociation within the tumor microenvironment. In vitro results confirm that HA/ZnO NCs possess excellent biocompatibility, while the DOX-loaded HA/ZnO NCs effectively inhibit tumor cell viability. Consequently, the integration of HA and ZnO represents a promising strategy for enhancing HA-based drug delivery systems (DDSs).
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.