Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-11 DOI:10.1016/j.scitotenv.2025.178460
Tuğçe Rükün, Neslim Ercan, Ece Canko, Bihter Avşar, Adrian G Dyer, Jair E Garcia, İbrahim Çakmak, Christopher Mayack
{"title":"Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.","authors":"Tuğçe Rükün, Neslim Ercan, Ece Canko, Bihter Avşar, Adrian G Dyer, Jair E Garcia, İbrahim Çakmak, Christopher Mayack","doi":"10.1016/j.scitotenv.2025.178460","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD<sub>50</sub> value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178460"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178460","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD50 value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Environmental assessment of formal and informal waste treatment of liquid crystal display (LCD) monitors. Temporal development of chlorinated hydrocarbons in the Baltic Sea sediments: Characterization of the pollution maximum. Arresting of efflorescence in ceramic tiles developed using caustic alumina industry waste (red mud). Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours. Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1