Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomedical Journal Pub Date : 2025-01-09 DOI:10.1016/j.bj.2025.100828
Malak Haidar, Tobias Mourier, Rahul Salunke, Abhinav Kaushik, Fathia Ben-Rached, Sara Mfarrej, Arnab Pain
{"title":"Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes.","authors":"Malak Haidar, Tobias Mourier, Rahul Salunke, Abhinav Kaushik, Fathia Ben-Rached, Sara Mfarrej, Arnab Pain","doi":"10.1016/j.bj.2025.100828","DOIUrl":null,"url":null,"abstract":"<p><p>Theileria parasites are known to induce the transformation of host bovine leukocytes, involved in rapid proliferation, evasion from apoptotic mechanisms, and increased dissemination. In this study, we reveal the involvement of m<sup>6</sup>A RNA modification in T. annulata infection-induced transformation of bovine leukocytes. We conducted m<sup>6</sup>A sequencing and bioinformatics analysis to map the mRNA methylation patterns of T. annulata-infected host leukocytes. We observe specific mRNA modifications for T. annulata-infected leukocytes and a strong correlation between the proliferation rate of the infected Leukocytes with m<sup>6</sup>A modifications We observe that the increased amounts of m<sup>6</sup>A seem to impact some cell cycle dynamics, potentially via modifications of E2F4 mRNA. Moreover, we further identify HIF-1α as a possible driver of these m<sup>6</sup>A RNA modifications that have clear relevance to cellular proliferation dynamics. Overall, our results provide insights into the role of m6A mRNA methylation in the molecular crosstalk between Theileria and their host leukocytes, emphasizing the critical role of mRNA methylation in host-parasite interaction.</p>","PeriodicalId":8934,"journal":{"name":"Biomedical Journal","volume":" ","pages":"100828"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bj.2025.100828","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Theileria parasites are known to induce the transformation of host bovine leukocytes, involved in rapid proliferation, evasion from apoptotic mechanisms, and increased dissemination. In this study, we reveal the involvement of m6A RNA modification in T. annulata infection-induced transformation of bovine leukocytes. We conducted m6A sequencing and bioinformatics analysis to map the mRNA methylation patterns of T. annulata-infected host leukocytes. We observe specific mRNA modifications for T. annulata-infected leukocytes and a strong correlation between the proliferation rate of the infected Leukocytes with m6A modifications We observe that the increased amounts of m6A seem to impact some cell cycle dynamics, potentially via modifications of E2F4 mRNA. Moreover, we further identify HIF-1α as a possible driver of these m6A RNA modifications that have clear relevance to cellular proliferation dynamics. Overall, our results provide insights into the role of m6A mRNA methylation in the molecular crosstalk between Theileria and their host leukocytes, emphasizing the critical role of mRNA methylation in host-parasite interaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Journal
Biomedical Journal Medicine-General Medicine
CiteScore
11.60
自引率
1.80%
发文量
128
审稿时长
42 days
期刊介绍: Biomedical Journal publishes 6 peer-reviewed issues per year in all fields of clinical and biomedical sciences for an internationally diverse authorship. Unlike most open access journals, which are free to readers but not authors, Biomedical Journal does not charge for subscription, submission, processing or publication of manuscripts, nor for color reproduction of photographs. Clinical studies, accounts of clinical trials, biomarker studies, and characterization of human pathogens are within the scope of the journal, as well as basic studies in model species such as Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealing the function of molecules, cells, and tissues relevant for human health. However, articles on other species can be published if they contribute to our understanding of basic mechanisms of biology. A highly-cited international editorial board assures timely publication of manuscripts. Reviews on recent progress in biomedical sciences are commissioned by the editors.
期刊最新文献
Chronic low-dose REV-ERBs agonist SR9009 mitigates constant light-induced weight gain and insulin resistance via adipogenesis modulation. Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes. Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes. Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway. The essence of cleft care: From embryogenesis to surgical management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1