Hangjia Zuo, Xianyang Liu, Yakun Wang, Huannan Ding, Wenjuan Wan, Shijie Zheng, Shengping Hou, Ke Hu
{"title":"SREBF1 facilitates pathological retinal neovascularization by reprogramming the fatty acid metabolism of endothelial cells.","authors":"Hangjia Zuo, Xianyang Liu, Yakun Wang, Huannan Ding, Wenjuan Wan, Shijie Zheng, Shengping Hou, Ke Hu","doi":"10.1016/j.exer.2025.110239","DOIUrl":null,"url":null,"abstract":"<p><p>Retinopathy of prematurity (ROP) is a proliferative retinal vascular disorder that critically affects the visual development of premature infants, potentially leading to irreversible vision loss or even blindness. Despite its significance, the underlying mechanisms of this disease remain insufficiently understood. In this study, we utilized the oxygen-induced retinopathy (OIR) mouse model and conducted endothelial functional assays to explore the role of Sterol Regulatory Element-Binding Protein 1 (SREBF1) in ROP pathogenesis. SREBF1 expression levels, along with its downstream targets, were investigated through Western blotting, RT-qPCR, and immunofluorescence staining techniques. Furthermore, Co-Immunoprecipitation (Co-IP) was employed to examine the molecular mechanisms involved. Our results demonstrated a significant increase in SREBF1 expression in both the OIR mouse model and hypoxic primary human retinal microvascular endothelial cells (HRMECs). Interventions conducted both in vivo and in vitro showed notable efficacy in reducing pathological neovascularization. Importantly, we discovered that SREBF1 plays a key role in modulating lipid metabolism in HRMECs by regulating the expression of ACC1 and FASN, leading to cellular reprogramming. This reprogramming influences HRMEC proliferation, migration, and tube formation through the HIF-1α/TGF-β signaling pathway, ultimately contributing to pathological retinal neovascularization. These findings provide new insights into the role of SREBF1 in angiogenesis within the context of ROP, offering potential therapeutic targets for the management and treatment of this disease.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110239"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110239","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retinopathy of prematurity (ROP) is a proliferative retinal vascular disorder that critically affects the visual development of premature infants, potentially leading to irreversible vision loss or even blindness. Despite its significance, the underlying mechanisms of this disease remain insufficiently understood. In this study, we utilized the oxygen-induced retinopathy (OIR) mouse model and conducted endothelial functional assays to explore the role of Sterol Regulatory Element-Binding Protein 1 (SREBF1) in ROP pathogenesis. SREBF1 expression levels, along with its downstream targets, were investigated through Western blotting, RT-qPCR, and immunofluorescence staining techniques. Furthermore, Co-Immunoprecipitation (Co-IP) was employed to examine the molecular mechanisms involved. Our results demonstrated a significant increase in SREBF1 expression in both the OIR mouse model and hypoxic primary human retinal microvascular endothelial cells (HRMECs). Interventions conducted both in vivo and in vitro showed notable efficacy in reducing pathological neovascularization. Importantly, we discovered that SREBF1 plays a key role in modulating lipid metabolism in HRMECs by regulating the expression of ACC1 and FASN, leading to cellular reprogramming. This reprogramming influences HRMEC proliferation, migration, and tube formation through the HIF-1α/TGF-β signaling pathway, ultimately contributing to pathological retinal neovascularization. These findings provide new insights into the role of SREBF1 in angiogenesis within the context of ROP, offering potential therapeutic targets for the management and treatment of this disease.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.