{"title":"Beyond what was said: Neural computations underlying pragmatic reasoning in referential communication.","authors":"Shanshan Zhen, Mario Martinez-Saito, Rongjun Yu","doi":"10.1016/j.neuroimage.2025.121022","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to infer a speaker's utterance within a particular context for the intended meaning is central to communication. Yet, little is known about the underlying neurocomputational mechanisms of pragmatic inference, let alone relevant differences among individuals. Here, using a reference game combined with model-based functional magnetic resonance imaging (fMRI), we showed that an individual-level pragmatic inference model was a better predictor of listeners' performance than a population-level model. Our fMRI results showed that Bayesian posterior probability was positively correlated with activity in the ventromedial prefrontal cortex (vmPFC) and ventral striatum and negatively correlated with activity in dorsomedial PFC, anterior insula (AI), and inferior frontal gyrus (IFG). Importantly, individual differences in higher-order reasoning were correlated with stronger activation in IFG and AI and positively modulated the vmPFC functional connectivity with AI. Our findings provide a preliminary neurocomputational account of how the brain represents Bayesian belief inferences and the neural basis of heterogeneity in such reasoning.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121022"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to infer a speaker's utterance within a particular context for the intended meaning is central to communication. Yet, little is known about the underlying neurocomputational mechanisms of pragmatic inference, let alone relevant differences among individuals. Here, using a reference game combined with model-based functional magnetic resonance imaging (fMRI), we showed that an individual-level pragmatic inference model was a better predictor of listeners' performance than a population-level model. Our fMRI results showed that Bayesian posterior probability was positively correlated with activity in the ventromedial prefrontal cortex (vmPFC) and ventral striatum and negatively correlated with activity in dorsomedial PFC, anterior insula (AI), and inferior frontal gyrus (IFG). Importantly, individual differences in higher-order reasoning were correlated with stronger activation in IFG and AI and positively modulated the vmPFC functional connectivity with AI. Our findings provide a preliminary neurocomputational account of how the brain represents Bayesian belief inferences and the neural basis of heterogeneity in such reasoning.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.