{"title":"VPT: Video portraits transformer for realistic talking face generation.","authors":"Zhijun Zhang, Jian Zhang, Weijian Mai","doi":"10.1016/j.neunet.2025.107122","DOIUrl":null,"url":null,"abstract":"<p><p>Talking face generation is a promising approach within various domains, such as digital assistants, video editing, and virtual video conferences. Previous works with audio-driven talking faces focused primarily on the synchronization between audio and video. However, existing methods still have certain limitations in synthesizing photo-realistic video with high identity preservation, audiovisual synchronization, and facial details like blink movements. To solve these problems, a novel talking face generation framework, termed video portraits transformer (VPT) with controllable blink movements is proposed and applied. It separates the process of video generation into two stages, i.e., audio-to-landmark and landmark-to-face stages. In the audio-to-landmark stage, the transformer encoder serves as the generator used for predicting whole facial landmarks from given audio and continuous eye aspect ratio (EAR). During the landmark-to-face stage, the video-to-video (vid-to-vid) network is employed to transfer landmarks into realistic talking face videos. Moreover, to imitate real blink movements during inference, a transformer-based spontaneous blink generation module is devised to generate the EAR sequence. Extensive experiments demonstrate that the VPT method can produce photo-realistic videos of talking faces with natural blink movements, and the spontaneous blink generation module can generate blink movements close to the real blink duration distribution and frequency.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107122"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107122","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Talking face generation is a promising approach within various domains, such as digital assistants, video editing, and virtual video conferences. Previous works with audio-driven talking faces focused primarily on the synchronization between audio and video. However, existing methods still have certain limitations in synthesizing photo-realistic video with high identity preservation, audiovisual synchronization, and facial details like blink movements. To solve these problems, a novel talking face generation framework, termed video portraits transformer (VPT) with controllable blink movements is proposed and applied. It separates the process of video generation into two stages, i.e., audio-to-landmark and landmark-to-face stages. In the audio-to-landmark stage, the transformer encoder serves as the generator used for predicting whole facial landmarks from given audio and continuous eye aspect ratio (EAR). During the landmark-to-face stage, the video-to-video (vid-to-vid) network is employed to transfer landmarks into realistic talking face videos. Moreover, to imitate real blink movements during inference, a transformer-based spontaneous blink generation module is devised to generate the EAR sequence. Extensive experiments demonstrate that the VPT method can produce photo-realistic videos of talking faces with natural blink movements, and the spontaneous blink generation module can generate blink movements close to the real blink duration distribution and frequency.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.