PHIStruct: improving phage-host interaction prediction at low sequence similarity settings using structure-aware protein embeddings.

Mark Edward M Gonzales, Jennifer C Ureta, Anish M S Shrestha
{"title":"PHIStruct: improving phage-host interaction prediction at low sequence similarity settings using structure-aware protein embeddings.","authors":"Mark Edward M Gonzales, Jennifer C Ureta, Anish M S Shrestha","doi":"10.1093/bioinformatics/btaf016","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.</p><p><strong>Results: </strong>We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera. Compared against recent tools, PHIStruct exhibits the best balance of precision and recall, with the highest and most stable F1 score across a wide range of confidence thresholds and sequence similarity settings. The margin in performance is most pronounced when the sequence similarity between the training and test sets drops below 40%, wherein, at a relatively high-confidence threshold of above 50%, PHIStruct presents a 7%-9% increase in class-averaged F1 over machine learning tools that do not directly incorporate structure information, as well as a 5%-6% increase over BLASTp.</p><p><strong>Availability and implementation: </strong>The data and source code for our experiments and analyses are available at https://github.com/bioinfodlsu/PHIStruct.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.

Results: We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera. Compared against recent tools, PHIStruct exhibits the best balance of precision and recall, with the highest and most stable F1 score across a wide range of confidence thresholds and sequence similarity settings. The margin in performance is most pronounced when the sequence similarity between the training and test sets drops below 40%, wherein, at a relatively high-confidence threshold of above 50%, PHIStruct presents a 7%-9% increase in class-averaged F1 over machine learning tools that do not directly incorporate structure information, as well as a 5%-6% increase over BLASTp.

Availability and implementation: The data and source code for our experiments and analyses are available at https://github.com/bioinfodlsu/PHIStruct.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHIStruct:利用结构感知蛋白包埋在低序列相似设置下改善噬菌体-宿主相互作用预测。
动机:最近预测噬菌体-宿主相互作用的计算方法已经探索了使用仅序列的蛋白质语言模型来产生噬菌体蛋白的嵌入,而无需手动特征工程。然而,这些嵌入并不直接捕获蛋白质结构信息和与宿主特异性相关的结构信息信号。结果:我们提出了一种多层感知器PHIStruct,它通过结构感知蛋白质语言模型SaProt生成的受体结合蛋白的结构感知嵌入,然后从ESKAPEE类中预测宿主。与最近的工具相比,PHIStruct展示了精度和召回率的最佳平衡,在广泛的置信度阈值和序列相似性设置中具有最高和最稳定的F1分数。当训练集和测试集之间的序列相似性下降到40%以下时,性能上的差距最为明显,其中,在高于50%的相对高置信度阈值下,PHIStruct比不直接包含结构信息的机器学习工具的类平均F1增加了7%到9%,比BLASTp增加了5%到6%。可用性和实施:我们的实验和分析的数据和源代码可在https://github.com/bioinfodlsu/PHIStruct.Supplementary上获得:补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1