M. Grant Roberts, Lila Braff, Aarna Garg, Stefano Profumo, Tesla Jeltema and Jackson O'Donnell
{"title":"Early formation of supermassive black holes from the collapse of strongly self-interacting dark matter","authors":"M. Grant Roberts, Lila Braff, Aarna Garg, Stefano Profumo, Tesla Jeltema and Jackson O'Donnell","doi":"10.1088/1475-7516/2025/01/060","DOIUrl":null,"url":null,"abstract":"Evidence for high-redshift supermassive black holes challenges standard scenarios for how such objects form in the early universe. Here, we entertain the possibility that a fraction of the cosmological dark matter could be ultra-strongly self interacting. This would imply that gravothermal collapse occur at early times in the cores of dark matter halos, followed by accretion. We study under which conditions on the abundance and interaction strength and structure of such ultra self-interacting dark matter the black holes resulting from the end-point of gravothermal core collapse can seed the observed, early-forming supermassive black holes. We find, depending on the velocity dependence of the self-interaction cross section, a bimodal structure in the favored parameter space, where data points to either a small collapsing dark matter fraction with a large cross section, or a large fraction and a relatively small cross section. While self-interaction cross sections with different velocity dependence can explain observations, we find that the best, self-consistent results correspond to a Rutherford-like self-interaction, typical of long-range dark-sector forces with light mediators. We discuss complementary observational probes if this scenario is realized in nature, focusing especially on the expected intermediate mass black holes predicted to exist in smaller galaxies.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/060","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence for high-redshift supermassive black holes challenges standard scenarios for how such objects form in the early universe. Here, we entertain the possibility that a fraction of the cosmological dark matter could be ultra-strongly self interacting. This would imply that gravothermal collapse occur at early times in the cores of dark matter halos, followed by accretion. We study under which conditions on the abundance and interaction strength and structure of such ultra self-interacting dark matter the black holes resulting from the end-point of gravothermal core collapse can seed the observed, early-forming supermassive black holes. We find, depending on the velocity dependence of the self-interaction cross section, a bimodal structure in the favored parameter space, where data points to either a small collapsing dark matter fraction with a large cross section, or a large fraction and a relatively small cross section. While self-interaction cross sections with different velocity dependence can explain observations, we find that the best, self-consistent results correspond to a Rutherford-like self-interaction, typical of long-range dark-sector forces with light mediators. We discuss complementary observational probes if this scenario is realized in nature, focusing especially on the expected intermediate mass black holes predicted to exist in smaller galaxies.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.