Ning Chen, Guangxia Liu, Wentao Chen, Juan Wang, Yu Zeng, Ziyan Yang, Yujun Wang, Guodong Fang
{"title":"Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil","authors":"Ning Chen, Guangxia Liu, Wentao Chen, Juan Wang, Yu Zeng, Ziyan Yang, Yujun Wang, Guodong Fang","doi":"10.1016/j.jhazmat.2025.137175","DOIUrl":null,"url":null,"abstract":"Hydroxyl radical (<sup>•</sup>OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored. Hence, the effects of agricultural amendments on <sup>•</sup>OH formation and pollutant degradation were examined based on field experiments. Compared with control, organic fertilizer (supplying more organic carbon (OC) and bioavailable elements that promoted Fe(II) formation by microorganisms) enhanced <sup>•</sup>OH production by 0.8–1.3 times, while straw returning and biochar have negligible effects, probably due to the decreased pH and inhibition of microorganisms. The increased oxidation of active Fe(II) species (e.g., exchangeable Fe(II) and Fe(II) in lower-crystallinity minerals) mainly contributed to <sup>•</sup>OH production. Further analyses showed that organic fertilizers significantly enhanced the redox cycling of Fe species mainly through increasing the contents of soil organic carbon and relative abundances of Fe(III)-reducing microorganisms. In addition, the increased <sup>•</sup>OH formation markedly enhanced imidacloprid degradation by 24.3–42.4 %, with the toxicity of intermediates increased versus the parent compound. This study systematically examined the effects of typical agricultural amendments on the <sup>•</sup>OH formation and organic contaminant attenuation in paddy soil, which probably provides promising strategies for regulating contaminant remediation in agricultural fields.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"14 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137175","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydroxyl radical (•OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored. Hence, the effects of agricultural amendments on •OH formation and pollutant degradation were examined based on field experiments. Compared with control, organic fertilizer (supplying more organic carbon (OC) and bioavailable elements that promoted Fe(II) formation by microorganisms) enhanced •OH production by 0.8–1.3 times, while straw returning and biochar have negligible effects, probably due to the decreased pH and inhibition of microorganisms. The increased oxidation of active Fe(II) species (e.g., exchangeable Fe(II) and Fe(II) in lower-crystallinity minerals) mainly contributed to •OH production. Further analyses showed that organic fertilizers significantly enhanced the redox cycling of Fe species mainly through increasing the contents of soil organic carbon and relative abundances of Fe(III)-reducing microorganisms. In addition, the increased •OH formation markedly enhanced imidacloprid degradation by 24.3–42.4 %, with the toxicity of intermediates increased versus the parent compound. This study systematically examined the effects of typical agricultural amendments on the •OH formation and organic contaminant attenuation in paddy soil, which probably provides promising strategies for regulating contaminant remediation in agricultural fields.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.