{"title":"Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential","authors":"Mengzhu Wang, Pinxi Zhou, Shane DuBay, Shangmingyu Zhang, Zhixiong Yang, Yibo Wang, Jiayu Zhang, Yiwei Cao, Zhengrui Hu, Xingcheng He, Shirui Wang, Man Li, Chen Fan, Boyan Zou, Chuang Zhou, Yongjie Wu","doi":"10.1016/j.jhazmat.2025.137274","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs, 1 µm–5<!-- --> <!-- -->mm) and nanoplastics (NPs, < 1<!-- --> <!-- -->µm), collectively termed micro(nano)plastics (MNPs), are pervasive airborne pollutants with significant ecological risks. Birds, recognized as bioindicators, are particularly vulnerable to MNP exposure, yet the extent and risks of MNP pollution in bird lungs remain largely unexplored. This study assessed MP exposure in bird lungs of 51 species and NP exposure in the lungs of five representative species using laser direct infrared (LDIR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) techniques, respectively. The LDIR analysis revealed different degrees of MP contamination in bird lungs, with an average abundance of 221.20 items per species and 416.22 MP particles per gram of lung. Among 32 identified MP types, chlorinated polyethylene (CPE) and butadiene rubber (BR) predominated, with particles primarily in film and pellet forms, concentrated in the 20–50 μm size range. The polymer hazard index (PHI) indicated elevated ecological risks (levels Ⅲ or Ⅳ) in most bird lungs. Py-GC-MS detected nylon 66 (PA66), polyvinyl chloride (PVC), and polypropylene (PP) NPs at varying concentrations. Terrestrial, carnivorous, and larger-bodied birds exhibited higher MNP burdens. This study provides the first evidence of MNP contamination in bird lungs, highlighting their potential as bioindicators of airborne MNP pollution.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"45 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137274","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs, 1 µm–5 mm) and nanoplastics (NPs, < 1 µm), collectively termed micro(nano)plastics (MNPs), are pervasive airborne pollutants with significant ecological risks. Birds, recognized as bioindicators, are particularly vulnerable to MNP exposure, yet the extent and risks of MNP pollution in bird lungs remain largely unexplored. This study assessed MP exposure in bird lungs of 51 species and NP exposure in the lungs of five representative species using laser direct infrared (LDIR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) techniques, respectively. The LDIR analysis revealed different degrees of MP contamination in bird lungs, with an average abundance of 221.20 items per species and 416.22 MP particles per gram of lung. Among 32 identified MP types, chlorinated polyethylene (CPE) and butadiene rubber (BR) predominated, with particles primarily in film and pellet forms, concentrated in the 20–50 μm size range. The polymer hazard index (PHI) indicated elevated ecological risks (levels Ⅲ or Ⅳ) in most bird lungs. Py-GC-MS detected nylon 66 (PA66), polyvinyl chloride (PVC), and polypropylene (PP) NPs at varying concentrations. Terrestrial, carnivorous, and larger-bodied birds exhibited higher MNP burdens. This study provides the first evidence of MNP contamination in bird lungs, highlighting their potential as bioindicators of airborne MNP pollution.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.