TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-01-08 DOI:10.1016/j.inffus.2024.102899
Zhenxi Zhao, Xinting Yang, Chunjiang Zhao, Chao Zhou
{"title":"TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion","authors":"Zhenxi Zhao, Xinting Yang, Chunjiang Zhao, Chao Zhou","doi":"10.1016/j.inffus.2024.102899","DOIUrl":null,"url":null,"abstract":"Utilizing multi-view learning to analyze fish behavior is crucial for fish disease early warning and developing intelligent feeding strategies. Trusted multi-view classification based on Dempster–Shafer Theory (DST) can effectively resolve view conflicts and significantly improve accuracy. However, these DST-based methods often assume that view source domain data are “independent”, and ignore the associations between different views, this can lead to inaccurate fusion and decision errors. To address this limitation, this paper proposes a Trusted Multi-View Fish (TMVF) Behavior Recognition Model that leverages adaptive fusion of associative feature evidence. TMVF employs a Multi-Source Composite Backbone (MSCB) at the feature level to integrate learning across different visual feature dimensions, providing non-independent feature vectors for deeper associative distribution learning. Additionally, a Trusted Association Multi-view (TAMV) Feature Fusion Module is introduced at the vector evidence level. TAMV utilizes a cross-association fusion method to capture the deeper associations between feature vectors rather than treating them as independent sources. It also employs a Dirichlet distribution for more reliable predictions, addressing conflicts between views. To validate TMVF’s performance, a real-world Multi-view Fish Behavior Recognition Dataset (MFBR) with top, underwater, and depth color views was constructed. Experimental results demonstrated TAMV’s superior performance on both the SynDD2 and MFBR datasets. Notably, TMVF achieved an accuracy of 98.48% on SynDD2, surpassing the Frame-flexible network (FFN) by 9.94%. On the MFBR dataset, TMVF achieved an accuracy of 96.56% and an F1-macro score of 94.31%, outperforming I3d+resnet50 by 10.62% and 50.4%, and the FFN by 4.5% and 30.58%, respectively. This demonstrates the effectiveness of TMVF in multi view tasks such as human and animal behavior recognition. The code will be publicly available on GitHub (<ce:inter-ref xlink:href=\"https://github.com/crazysboy/TMVF\" xlink:type=\"simple\">https://github.com/crazysboy/TMVF</ce:inter-ref>).","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"205 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102899","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing multi-view learning to analyze fish behavior is crucial for fish disease early warning and developing intelligent feeding strategies. Trusted multi-view classification based on Dempster–Shafer Theory (DST) can effectively resolve view conflicts and significantly improve accuracy. However, these DST-based methods often assume that view source domain data are “independent”, and ignore the associations between different views, this can lead to inaccurate fusion and decision errors. To address this limitation, this paper proposes a Trusted Multi-View Fish (TMVF) Behavior Recognition Model that leverages adaptive fusion of associative feature evidence. TMVF employs a Multi-Source Composite Backbone (MSCB) at the feature level to integrate learning across different visual feature dimensions, providing non-independent feature vectors for deeper associative distribution learning. Additionally, a Trusted Association Multi-view (TAMV) Feature Fusion Module is introduced at the vector evidence level. TAMV utilizes a cross-association fusion method to capture the deeper associations between feature vectors rather than treating them as independent sources. It also employs a Dirichlet distribution for more reliable predictions, addressing conflicts between views. To validate TMVF’s performance, a real-world Multi-view Fish Behavior Recognition Dataset (MFBR) with top, underwater, and depth color views was constructed. Experimental results demonstrated TAMV’s superior performance on both the SynDD2 and MFBR datasets. Notably, TMVF achieved an accuracy of 98.48% on SynDD2, surpassing the Frame-flexible network (FFN) by 9.94%. On the MFBR dataset, TMVF achieved an accuracy of 96.56% and an F1-macro score of 94.31%, outperforming I3d+resnet50 by 10.62% and 50.4%, and the FFN by 4.5% and 30.58%, respectively. This demonstrates the effectiveness of TMVF in multi view tasks such as human and animal behavior recognition. The code will be publicly available on GitHub (https://github.com/crazysboy/TMVF).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles Towards a robust multi-view information bottleneck using Cauchy–Schwarz divergence TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion Improving the local diagnostic explanations of diabetes mellitus with the ensemble of label noise filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1