Superthermal solar interfacial evaporation is not due to reduced latent heat of water†

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-01-14 DOI:10.1039/D4EE05591H
James H. Zhang, Rohith Mittapally, Guangxin Lv and Gang Chen
{"title":"Superthermal solar interfacial evaporation is not due to reduced latent heat of water†","authors":"James H. Zhang, Rohith Mittapally, Guangxin Lv and Gang Chen","doi":"10.1039/D4EE05591H","DOIUrl":null,"url":null,"abstract":"<p >To explain reported solar interfacial-evaporation rates from porous materials beyond an apparent 100% efficiency using the thermal evaporation mechanism, many publications hypothesize that intermediate water inside porous materials has a reduced latent heat. Key supporting evidence is that water-only surfaces have lower natural evaporation rates than porous evaporators, with the ratio of the two rates taken as the latent heat reduction. Through simulations and experiments, we study natural evaporation of water and show that reported differences in evaporation rates between porous materials and water are likely due to experimental error from recessed evaporating surfaces. A few millimeter recession of the water surface relative to the container lip can drop evaporation rates by over 50% due to a stagnant air layer, suggesting that the comparative experiments are prone to error. Furthermore, in the reduced latent heat picture, interfacial cooling must occur at the porous sample–water interface due to the enthalpy difference between bulk water and intermediate water. Our transport modeling shows that reduced latent heat cannot explain superthermal evaporation and that new mechanistic directions need to be pursued.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 4","pages":" 1707-1721"},"PeriodicalIF":32.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d4ee05591h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05591h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To explain reported solar interfacial-evaporation rates from porous materials beyond an apparent 100% efficiency using the thermal evaporation mechanism, many publications hypothesize that intermediate water inside porous materials has a reduced latent heat. Key supporting evidence is that water-only surfaces have lower natural evaporation rates than porous evaporators, with the ratio of the two rates taken as the latent heat reduction. Through simulations and experiments, we study natural evaporation of water and show that reported differences in evaporation rates between porous materials and water are likely due to experimental error from recessed evaporating surfaces. A few millimeter recession of the water surface relative to the container lip can drop evaporation rates by over 50% due to a stagnant air layer, suggesting that the comparative experiments are prone to error. Furthermore, in the reduced latent heat picture, interfacial cooling must occur at the porous sample–water interface due to the enthalpy difference between bulk water and intermediate water. Our transport modeling shows that reduced latent heat cannot explain superthermal evaporation and that new mechanistic directions need to be pursued.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高温太阳界面蒸发并非由于水的潜热降低所致
为了解释报道的多孔材料的太阳界面蒸发率超过100%的明显效率,许多出版物假设多孔材料内部的中间水具有降低的潜热。关键的支持证据是,纯水表面比多孔蒸发器具有更低的自然蒸发速率,这两种速率的比值作为潜热减少。通过模拟和实验,我们研究了水的自然蒸发,并表明多孔材料和水之间的蒸发速率差异可能是由于凹陷蒸发表面的实验误差造成的。由于空气层的停滞,水面相对于容器唇部的几毫米的退缩可以使蒸发速率下降50%以上,这表明比较实验容易出错。此外,在减少潜热图中,由于散装水和中间水之间的焓差,界面冷却必须发生在多孔样品-水界面。我们的运输模式表明潜热的减少不能解释过热蒸发,需要寻找新的机制方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Accelerating Interfacial Desolvation Kinetic by NaF-Rich Composite Sodium for High-Performance All-Climate Sodium-Metal Batteries A Microstructural Electrochemo-mechanical Model of High-nickel Composite Electrodes Towards Digital Twins to Bridge the Particle and Electrode-level Characterizations Fluorinated-oligomeric Ionic Liquids for High-performance Wide-temperature Solid Zinc Batteries CsPbI2Br Quantum Dots Integration for High Performance Organic Photovoltaics and Photodetectors Achieving Unprecedented Power-Output in 4-Terminal Mirror-Symmetrical Printable Carbon CsPbBr3 Solar Cells through Dual-Solvent Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1