{"title":"Achieving Unprecedented Power-Output in 4-Terminal Mirror-Symmetrical Printable Carbon CsPbBr3 Solar Cells through Dual-Solvent Engineering","authors":"Wu Shao, Jie Sheng, Yufei Fu, Jingwen He, Zhihao Deng, Rong-hao Cen, Wenjun Wu","doi":"10.1039/d4ee05841k","DOIUrl":null,"url":null,"abstract":"Conventional aqueous processing of all-inorganic CsPbBr3 perovskite solar cells has encountered significant limitations hindering performance optimization and long-term stability. To address these challenges, we introduce a novel dual-solvent engineering strategy guided by Density Functional Theory (DFT) calculations and Tyndall effect analysis. By carefully selecting solvents with enhanced donor numbers and dielectric constants, the surface Br/Pb ratio of CsPbBr3 was effectively modulated, induce p-type transition, and suppress defect formation within the perovskite film. These synergistic effects lead to extended carrier lifetimes, reduced defect densities, and improved charge transport properties. Consequently, our all-inorganic carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) achieve a record power conversion efficiency (PCE) of 10.18% (with a large-area device of 17.88 cm² reaching 8.72%). Furthermore, integrating a 4-terminal mirror reflection concentrator significantly boosts power output to 29.44 mW cm⁻². Remarkably, the devices exhibit exceptional stability, retaining 93.2% of their initial PCE after 1000 hours of operation at 150 °C. Our findings establish a promising pathway towards high-performance and stable all-inorganic perovskite solar cells suitable for large-scale applications.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"89 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05841k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional aqueous processing of all-inorganic CsPbBr3 perovskite solar cells has encountered significant limitations hindering performance optimization and long-term stability. To address these challenges, we introduce a novel dual-solvent engineering strategy guided by Density Functional Theory (DFT) calculations and Tyndall effect analysis. By carefully selecting solvents with enhanced donor numbers and dielectric constants, the surface Br/Pb ratio of CsPbBr3 was effectively modulated, induce p-type transition, and suppress defect formation within the perovskite film. These synergistic effects lead to extended carrier lifetimes, reduced defect densities, and improved charge transport properties. Consequently, our all-inorganic carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) achieve a record power conversion efficiency (PCE) of 10.18% (with a large-area device of 17.88 cm² reaching 8.72%). Furthermore, integrating a 4-terminal mirror reflection concentrator significantly boosts power output to 29.44 mW cm⁻². Remarkably, the devices exhibit exceptional stability, retaining 93.2% of their initial PCE after 1000 hours of operation at 150 °C. Our findings establish a promising pathway towards high-performance and stable all-inorganic perovskite solar cells suitable for large-scale applications.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).