{"title":"Optical Coherence of B Center Quantum Emitters in Hexagonal Boron Nitride","authors":"Jake Horder, Dominic Scognamiglio, Nathan Coste, Angus Gale, Kenji Watanabe, Takashi Taniguchi, Mehran Kianinia, Milos Toth, Igor Aharonovich","doi":"10.1021/acsphotonics.4c02088","DOIUrl":null,"url":null,"abstract":"Coherent quantum emitters are a central resource for advanced quantum technologies. Hexagonal boron nitride (hBN) hosts a range of quantum emitters that can be engineered using techniques such as high-temperature annealing, optical doping, and irradiation with electrons or ions. Here, we demonstrate that such processes can degrade the coherence and, hence, the functionality of quantum emitters in hBN. Specifically, we show that hBN annealing and doping methods that are used routinely in hBN nanofabrication protocols give rise to fluctuations in the spectrum and intensity of B center quantum emitters. This decoherence is characterized in detail and attributed to defects that act as charge traps, which fluctuate electrostatically during SPE excitation and induce spectral diffusion. The decoherence is minimal when the emitters are engineered by electron beam irradiation of as-grown, pristine flakes of hBN, where B center line widths approach the lifetime limit needed for quantum applications involving interference and entanglement. Our work highlights the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN, despite the common perception that the hBN lattice and hBN SPEs are highly stable and resilient against chemical and thermal degradation. It underscores the need for nanofabrication techniques that are minimally invasive and avoid crystal damage when engineering hBN SPEs and devices for quantum-coherent technologies.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"118 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02088","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent quantum emitters are a central resource for advanced quantum technologies. Hexagonal boron nitride (hBN) hosts a range of quantum emitters that can be engineered using techniques such as high-temperature annealing, optical doping, and irradiation with electrons or ions. Here, we demonstrate that such processes can degrade the coherence and, hence, the functionality of quantum emitters in hBN. Specifically, we show that hBN annealing and doping methods that are used routinely in hBN nanofabrication protocols give rise to fluctuations in the spectrum and intensity of B center quantum emitters. This decoherence is characterized in detail and attributed to defects that act as charge traps, which fluctuate electrostatically during SPE excitation and induce spectral diffusion. The decoherence is minimal when the emitters are engineered by electron beam irradiation of as-grown, pristine flakes of hBN, where B center line widths approach the lifetime limit needed for quantum applications involving interference and entanglement. Our work highlights the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN, despite the common perception that the hBN lattice and hBN SPEs are highly stable and resilient against chemical and thermal degradation. It underscores the need for nanofabrication techniques that are minimally invasive and avoid crystal damage when engineering hBN SPEs and devices for quantum-coherent technologies.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.