Effect of undercooled austenite cooling rate on the low cycle fatigue properties of an austempering bainitic steel

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2025-01-04 DOI:10.1016/j.ijfatigue.2025.108809
Yingnan Li , Yu Zhang , Xiaoyan Long , Ranran Zhu , Wanshuai Wang , Yanguo Li , Zeliang Liu
{"title":"Effect of undercooled austenite cooling rate on the low cycle fatigue properties of an austempering bainitic steel","authors":"Yingnan Li ,&nbsp;Yu Zhang ,&nbsp;Xiaoyan Long ,&nbsp;Ranran Zhu ,&nbsp;Wanshuai Wang ,&nbsp;Yanguo Li ,&nbsp;Zeliang Liu","doi":"10.1016/j.ijfatigue.2025.108809","DOIUrl":null,"url":null,"abstract":"<div><div>Carbide-free bainitic microstructures with different morphologies were obtained by designing different cooling rates in medium-carbon bainitic steel, and the effect of undercooled austenite cooling rate on the low cycle fatigue (LCF) properties of austempering bainitic steels was systematically investigated. The results show that with the reduction of the cooling rate, the bainitic ferrite laths are coarsened, the content of retained austenite is reduced, and the proportion of filmy retained austenite is increased. The samples with a cooling rate of 30 °C/s at low strain amplitude possessed higher fatigue life, while the samples with a cooling rate of 0.3 °C/s at high strain amplitude exhibited higher fatigue life. This is because the phase transformation induced plasticity (TRIP) effect at low strain amplitude improves the samples’ plastic deformation resistance. In contrast, the brittle martensite produced by the TRIP effect at high strain amplitude is more likely to provide a crack propagation path.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"193 ","pages":"Article 108809"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325000064","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbide-free bainitic microstructures with different morphologies were obtained by designing different cooling rates in medium-carbon bainitic steel, and the effect of undercooled austenite cooling rate on the low cycle fatigue (LCF) properties of austempering bainitic steels was systematically investigated. The results show that with the reduction of the cooling rate, the bainitic ferrite laths are coarsened, the content of retained austenite is reduced, and the proportion of filmy retained austenite is increased. The samples with a cooling rate of 30 °C/s at low strain amplitude possessed higher fatigue life, while the samples with a cooling rate of 0.3 °C/s at high strain amplitude exhibited higher fatigue life. This is because the phase transformation induced plasticity (TRIP) effect at low strain amplitude improves the samples’ plastic deformation resistance. In contrast, the brittle martensite produced by the TRIP effect at high strain amplitude is more likely to provide a crack propagation path.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过冷奥氏体冷却速率对奥氏体贝氏体钢低循环疲劳性能的影响
通过设计不同的冷却速率,在中碳贝氏体钢中获得了不同形貌的无碳化物贝氏体组织,并系统研究了过冷奥氏体冷却速率对等温贝氏体钢低周疲劳性能的影响。结果表明:随着冷却速率的降低,贝氏体铁素体板条粗化,残余奥氏体含量降低,膜状残余奥氏体比例增加;在低应变幅下,冷却速度为30℃/s的试样具有较高的疲劳寿命,而在高应变幅下,冷却速度为0.3℃/s的试样具有较高的疲劳寿命。这是因为低应变幅值下的相变诱导塑性(TRIP)效应提高了试样的塑性变形抗力。相反,高应变幅下TRIP效应产生的脆性马氏体更有可能提供裂纹扩展路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
The influence of printing strategies on the fatigue crack growth behaviour of an additively manufactured Ti6Al4V Grade 23 titanium alloy Notch structural stress theory: Part Ⅲ surface roughness effect on fatigue lives A novel physical cycle-jump method for fatigue crack simulation of polycrystalline nickel-based superalloy A data-assisted physics-informed neural network for predicting fatigue life of electronic components under complex shock loads Grain size refinement of hard nitride coating to mitigate fatigue performance degradation in ductile metal substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1