Ferroelectric Polarization-Induced Performance Enhancements in BiFeO3/BiVO4 Photoanodes for Photoelectrochemical Water Splitting

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-14 DOI:10.1002/adfm.202417651
Michael Gunawan, Owen Bowdler, Shujie Zhou, Xueqing Fang, Qi Zhang, Yasuhiro Sakamoto, Kaiwen Sun, Denny Gunawan, Shery L.Y. Chang, Rose Amal, Nagarajan Valanoor, Jason Scott, Judy N. Hart, Cui Ying Toe
{"title":"Ferroelectric Polarization-Induced Performance Enhancements in BiFeO3/BiVO4 Photoanodes for Photoelectrochemical Water Splitting","authors":"Michael Gunawan, Owen Bowdler, Shujie Zhou, Xueqing Fang, Qi Zhang, Yasuhiro Sakamoto, Kaiwen Sun, Denny Gunawan, Shery L.Y. Chang, Rose Amal, Nagarajan Valanoor, Jason Scott, Judy N. Hart, Cui Ying Toe","doi":"10.1002/adfm.202417651","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical (PEC) processes will play a crucial role in future clean energy systems, however severe charge recombination and sluggish charge transfer kinetics have hindered their practical adoption. Exploiting ferroelectric polarization-controlled charge dynamics promises an additional lever that can potentially enable the performance limits of traditional static photoelectrodes to be surpassed. Here one of the most notable ferroelectric polarization-induced photocurrent enhancements is reported, using a heterostructure of the multiferroic bismuth ferrite (BFO) and the photoactive bismuth vanadate (BVO) in a neutral pH electrolyte. In contrast to previous works, enhancements for both poling directions are reported, of 136% for down-poled BFO/BVO and 70% for up-poled BFO/BVO at 1.23 V<sub>RHE</sub> in comparison to the unpoled sample, delivering a Faradaic efficiency of &gt;95% for prolonged oxygen evolution reaction. Extensive PEC and surface analyses complemented by density functional theory (DFT) calculations reveal the improvements are attributed to the modulation of gradients in the BFO band energies, as well as changes in band-bending and offsets at the interfaces. Given the scalability of the employed sol–gel synthesis method and the use of environmentally benign materials and PEC conditions, these findings pave the way for multifunctional materials as new-generation agile and dynamic catalysts and photoelectrode systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"61 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417651","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) processes will play a crucial role in future clean energy systems, however severe charge recombination and sluggish charge transfer kinetics have hindered their practical adoption. Exploiting ferroelectric polarization-controlled charge dynamics promises an additional lever that can potentially enable the performance limits of traditional static photoelectrodes to be surpassed. Here one of the most notable ferroelectric polarization-induced photocurrent enhancements is reported, using a heterostructure of the multiferroic bismuth ferrite (BFO) and the photoactive bismuth vanadate (BVO) in a neutral pH electrolyte. In contrast to previous works, enhancements for both poling directions are reported, of 136% for down-poled BFO/BVO and 70% for up-poled BFO/BVO at 1.23 VRHE in comparison to the unpoled sample, delivering a Faradaic efficiency of >95% for prolonged oxygen evolution reaction. Extensive PEC and surface analyses complemented by density functional theory (DFT) calculations reveal the improvements are attributed to the modulation of gradients in the BFO band energies, as well as changes in band-bending and offsets at the interfaces. Given the scalability of the employed sol–gel synthesis method and the use of environmentally benign materials and PEC conditions, these findings pave the way for multifunctional materials as new-generation agile and dynamic catalysts and photoelectrode systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity Smart Flow Micro-Reaction Device Integrated with Oxygen Reduction Catalysts for Gaseous Electrochemiluminescence Sensing Ferroelectric Polarization-Induced Performance Enhancements in BiFeO3/BiVO4 Photoanodes for Photoelectrochemical Water Splitting Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations A Peptide Nanoregulator Enriched at the Endoplasmic Reticulum for Boosting Fractionated Radiotherapy-Mediated Antitumor Immune Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1