A Streamlined Approach to Anticounterfeiting Technologies: Patterned AAO Membranes Based on Photonic Crystal Effects with Tunable Color Shifts and pH Responsiveness
{"title":"A Streamlined Approach to Anticounterfeiting Technologies: Patterned AAO Membranes Based on Photonic Crystal Effects with Tunable Color Shifts and pH Responsiveness","authors":"Yu-Chun Lin, Lin-Ruei Lee, Tsung-Hung Tsai, Ji Lin, Yen-Shen Hsu, Manibalan Kesavan, Yu-Liang Lin, Yi-Fan Chen, Jiun-Tai Chen","doi":"10.1002/smll.202409919","DOIUrl":null,"url":null,"abstract":"Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes. Unlike previous approaches requiring metal coatings for color generation, this method uses commercial aluminum foils to produce colorful AAO membranes without metal layers. Elemental mapping suggests that impurities on the aluminum surface contribute to enhanced reflectivity, aiding photonic crystal formation. A two-step anodization process that creates patterned AAO membranes is further introduced, with the pattern clarity controlled by anodization time. Additionally, a pH-responsive film composed of 2-anilino-6-dibutylaminofluoran (ODB-2) and thermoplastic polyurethane (TPU) is integrated, enabling dynamic color changes under varying pH conditions, further enhancing the anticounterfeiting functionality. This streamlined approach provides a scalable and cost-effective solution for developing versatile AAO membranes for industrial anticounterfeiting applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409919","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes. Unlike previous approaches requiring metal coatings for color generation, this method uses commercial aluminum foils to produce colorful AAO membranes without metal layers. Elemental mapping suggests that impurities on the aluminum surface contribute to enhanced reflectivity, aiding photonic crystal formation. A two-step anodization process that creates patterned AAO membranes is further introduced, with the pattern clarity controlled by anodization time. Additionally, a pH-responsive film composed of 2-anilino-6-dibutylaminofluoran (ODB-2) and thermoplastic polyurethane (TPU) is integrated, enabling dynamic color changes under varying pH conditions, further enhancing the anticounterfeiting functionality. This streamlined approach provides a scalable and cost-effective solution for developing versatile AAO membranes for industrial anticounterfeiting applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.