Molecular Simulation Study of Elasticity of Fluid-Saturated Zeolites

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-01-14 DOI:10.1021/acs.jpcc.4c04839
Santiago A. Flores Roman, Alina Emelianova, Gennady Y. Gor
{"title":"Molecular Simulation Study of Elasticity of Fluid-Saturated Zeolites","authors":"Santiago A. Flores Roman, Alina Emelianova, Gennady Y. Gor","doi":"10.1021/acs.jpcc.4c04839","DOIUrl":null,"url":null,"abstract":"Zeolites are widely used for applications involving gas adsorption thanks to their crystalline porous structure, high surface area, and mechanical stability. Experiments using magnetoelastic sensors showed that gas adsorption can noticeably alter the elastic moduli of zeolites. Here, we utilized a combination of the classical molecular dynamics and Monte Carlo simulations to explore this effect in silico, calculating the bulk moduli of the zeolites, of the fluids adsorbed in these zeolites, and of the zeolite-fluid composites. We considered two gases─nitrogen and carbon dioxide, in two zeolite structures 13X and 4A. The moduli of the composite systems were calculated using two alternative approaches: from the moduli of the constituents (unsaturated zeolite and adsorbed fluid) using the Gassmann equation, and directly, using the Birch–Murnaghan equation of state. The direct approach showed better agreement with the experimental observations, raising a question on the applicability of the Gassmann equation for microporous zeolites.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"7 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c04839","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zeolites are widely used for applications involving gas adsorption thanks to their crystalline porous structure, high surface area, and mechanical stability. Experiments using magnetoelastic sensors showed that gas adsorption can noticeably alter the elastic moduli of zeolites. Here, we utilized a combination of the classical molecular dynamics and Monte Carlo simulations to explore this effect in silico, calculating the bulk moduli of the zeolites, of the fluids adsorbed in these zeolites, and of the zeolite-fluid composites. We considered two gases─nitrogen and carbon dioxide, in two zeolite structures 13X and 4A. The moduli of the composite systems were calculated using two alternative approaches: from the moduli of the constituents (unsaturated zeolite and adsorbed fluid) using the Gassmann equation, and directly, using the Birch–Murnaghan equation of state. The direct approach showed better agreement with the experimental observations, raising a question on the applicability of the Gassmann equation for microporous zeolites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Evaluating the Dehydrogenation Performance of Cyclohexane on Pt-Skin AgPt3(111) and Ag3Pt(111) Surface Slabs: A Density Functional Theory Approach Theoretical Investigation of Polarization-Sensitive Photoresponse in the Donor–Acceptor Interface of Organic Photovoltaic Devices Out-of-Plane Piezoelectricity of V2CXY (X/Y = O, S, Se) MXenes Monolayers for Wearable Devices Molecular Simulation Study of Elasticity of Fluid-Saturated Zeolites Unraveling the Effects of Reducing and Oxidizing Pretreatments and Humidity on the Surface Chemistry of the Ru/CeO2 Catalyst during Propane Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1