{"title":"Imidazolium-Based Ionic Liquid Exhibiting Dual Hydrophilic and Oleophobic Properties without Polar End Groups","authors":"Alan Tirado, Lei Li","doi":"10.1021/acs.langmuir.4c04319","DOIUrl":null,"url":null,"abstract":"Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil–water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups. Key findings show that, despite the bulk form of HFIL having a high hexadecane contact angle (HCA) of 74.1° and an even higher water contact angle (WCA) of 87.6°, the IL forms a stable monolayer on high-energy surfaces exhibiting a much lower WCA of approximately 40° with minimal change to the HCA. Washing tests demonstrate that, even without the polar functional groups, there is a non-zero bonded thickness upon which the oleophobicity is comparable to polytetrafluorethylene (PTFE). These properties highlight HFIL’s potential for durable applications in antifouling, antifogging, and environmental separation technologies, where selective liquid interactions are essential. This work contributes to a broader understanding of IL-based surface modifications, advancing the development of high-performance coatings.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"16 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04319","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil–water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups. Key findings show that, despite the bulk form of HFIL having a high hexadecane contact angle (HCA) of 74.1° and an even higher water contact angle (WCA) of 87.6°, the IL forms a stable monolayer on high-energy surfaces exhibiting a much lower WCA of approximately 40° with minimal change to the HCA. Washing tests demonstrate that, even without the polar functional groups, there is a non-zero bonded thickness upon which the oleophobicity is comparable to polytetrafluorethylene (PTFE). These properties highlight HFIL’s potential for durable applications in antifouling, antifogging, and environmental separation technologies, where selective liquid interactions are essential. This work contributes to a broader understanding of IL-based surface modifications, advancing the development of high-performance coatings.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).