Purification, characterization, and mechanistic studies of Gassericin GA-3.1: A novel class IIc bacteriocin produced by Lactobacillus gasseri LG145.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-01-11 DOI:10.1016/j.ijbiomac.2025.139811
Xin Zhou, Yu Wang, Tharushi S Shinali, Boya Gao, Ruoqiu Yang, Pinglan Li, Nan Shang
{"title":"Purification, characterization, and mechanistic studies of Gassericin GA-3.1: A novel class IIc bacteriocin produced by Lactobacillus gasseri LG145.","authors":"Xin Zhou, Yu Wang, Tharushi S Shinali, Boya Gao, Ruoqiu Yang, Pinglan Li, Nan Shang","doi":"10.1016/j.ijbiomac.2025.139811","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.1, a novel cyclic bacteriocin produced by Lactobacillus gasseri LG145. We employed a multi-step purification process, including salt precipitation, ion-exchange chromatography, gel filtration chromatography, and ultimately high-performance liquid chromatography (HPLC), achieving a specific activity of 4660.89 AU/mg for the purified Gassericin GA-3.1. Mass spectrometry revealed a molecular mass of 5613.842 Da. Genome analysis confirmed Gassericin GA-3.1 as a novel class IIc bacteriocin with a unique amino acid sequence. Secondary structure prediction suggested the presence of three α-helices, two β-pleated strands, and a random coil. Physicochemical characterization demonstrated GassericinGA-3.1's thermal stability, resistance to pH extremes, surfactants, and broad-spectrum antibacterial potency. Notably, Gassericin GA-3.1 effectively inhibit Listeria monocytogenes through mechanism involving surface perforation, membrane potential disruption, and downregulation of virulence, biofilm formation, and motility genes. Overall, our finding position Gassericin GA-3.1 as a potential candidate for antimicrobial applications in the food and health industries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139811"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.1, a novel cyclic bacteriocin produced by Lactobacillus gasseri LG145. We employed a multi-step purification process, including salt precipitation, ion-exchange chromatography, gel filtration chromatography, and ultimately high-performance liquid chromatography (HPLC), achieving a specific activity of 4660.89 AU/mg for the purified Gassericin GA-3.1. Mass spectrometry revealed a molecular mass of 5613.842 Da. Genome analysis confirmed Gassericin GA-3.1 as a novel class IIc bacteriocin with a unique amino acid sequence. Secondary structure prediction suggested the presence of three α-helices, two β-pleated strands, and a random coil. Physicochemical characterization demonstrated GassericinGA-3.1's thermal stability, resistance to pH extremes, surfactants, and broad-spectrum antibacterial potency. Notably, Gassericin GA-3.1 effectively inhibit Listeria monocytogenes through mechanism involving surface perforation, membrane potential disruption, and downregulation of virulence, biofilm formation, and motility genes. Overall, our finding position Gassericin GA-3.1 as a potential candidate for antimicrobial applications in the food and health industries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
The molecular structure of SHISA5 protein and its novel role in primary biliary cholangitis: From single-cell RNA sequencing to biomarkers. Corrigendum to "Fucoidan-hybrid hydroxyapatite nanoparticles promote the osteogenic differentiation of human periodontal ligament stem cells under inflammatory condition" [Int. J. Biol. Macromol. 270 (2024) 132416]. Corrigendum to "Structure-guided engineering an (R)-transaminase from Mycobacterium neoaurum for efficient synthesis of chiral N-heterocyclic amines" [Int. J. Biol. Macromol. volume 287, January 2025, 138591]. Preparation of carboxymethyl chitosan-Tb3+ (CMCh-Tb3+) fluorescent probe: For high-sensitivity Cu2+ detection and mechanism study. Purification, characterization, and mechanistic studies of Gassericin GA-3.1: A novel class IIc bacteriocin produced by Lactobacillus gasseri LG145.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1