{"title":"HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.","authors":"Kashif Iqbal Sahibzada, Shumaila Shahid, Mohsina Akhter, Rizwan Abid, Muteeba Azhar, Yuansen Hu, Dong-Qing Wei","doi":"10.1021/acs.jcim.4c01808","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive. To address these challenges, we developed HIV OctaScanner, a machine learning algorithm that predicts the proteolytic cleavage activity of octameric substrates at the HIV-1 protease cleavage sites. The algorithm uses a Random Forest (RF) classifier and achieves a prediction accuracy of 89% in the identification of cleavable octamers. This innovative approach facilitates the rapid screening of potential substrates for HIV-1 protease, providing critical insights into enzyme function and guiding the development of more effective therapeutic strategies. By improving the accuracy of substrate identification, HIV OctaScanner has the potential to support the development of next generation antiretroviral treatments.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01808","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive. To address these challenges, we developed HIV OctaScanner, a machine learning algorithm that predicts the proteolytic cleavage activity of octameric substrates at the HIV-1 protease cleavage sites. The algorithm uses a Random Forest (RF) classifier and achieves a prediction accuracy of 89% in the identification of cleavable octamers. This innovative approach facilitates the rapid screening of potential substrates for HIV-1 protease, providing critical insights into enzyme function and guiding the development of more effective therapeutic strategies. By improving the accuracy of substrate identification, HIV OctaScanner has the potential to support the development of next generation antiretroviral treatments.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.