{"title":"MVCL-DTI: Predicting Drug-Target Interactions Using a Multiview Contrastive Learning Model on a Heterogeneous Graph.","authors":"Bei Zhang, Lijun Quan, Zhijun Zhang, Lexin Cao, Qiufeng Chen, Liangchen Peng, Junkai Wang, Yelu Jiang, Liangpeng Nie, Geng Li, Tingfang Wu, Qiang Lyu","doi":"10.1021/acs.jcim.4c02073","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of drug-target interactions (DTIs) is pivotal for accelerating the processes of drug discovery and drug repurposing. MVCL-DTI, a novel model leveraging heterogeneous graphs for predicting DTIs, tackles the challenge of synthesizing information from varied biological subnetworks. It integrates neighbor view, meta-path view, and diffusion view to capture semantic features and employs an attention-based contrastive learning approach, along with a multiview attention-weighted fusion module, to effectively integrate and adaptively weight the information from the different views. Tested under various conditions on benchmark data sets, including varying positive-to-negative sample ratios, conducting hard negative sampling experiments, and masking known DTIs with different ratios, as well as redundant DTIs with various similarity metrics, MVCL-DTI exhibits strong robust generalization. The model is then employed to predict novel DTIs, with a particular focus on COVID-19-related drugs, highlighting its practical applicability. Ultimately, through features visualization and computational properties analysis, we've pinpointed critical elements, including Gene Ontology and substituent nodes, along with a proper initialization strategy, underscoring their vital role in DTI prediction tasks.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02073","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of drug-target interactions (DTIs) is pivotal for accelerating the processes of drug discovery and drug repurposing. MVCL-DTI, a novel model leveraging heterogeneous graphs for predicting DTIs, tackles the challenge of synthesizing information from varied biological subnetworks. It integrates neighbor view, meta-path view, and diffusion view to capture semantic features and employs an attention-based contrastive learning approach, along with a multiview attention-weighted fusion module, to effectively integrate and adaptively weight the information from the different views. Tested under various conditions on benchmark data sets, including varying positive-to-negative sample ratios, conducting hard negative sampling experiments, and masking known DTIs with different ratios, as well as redundant DTIs with various similarity metrics, MVCL-DTI exhibits strong robust generalization. The model is then employed to predict novel DTIs, with a particular focus on COVID-19-related drugs, highlighting its practical applicability. Ultimately, through features visualization and computational properties analysis, we've pinpointed critical elements, including Gene Ontology and substituent nodes, along with a proper initialization strategy, underscoring their vital role in DTI prediction tasks.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.