Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-01-13 DOI:10.1007/s11626-024-01005-y
Shengbiao Li, Yi Zhang, Tianyi Zhang, Donghui Jiang, Mi Li, Ligang Chen, Jun Jiang, Chunxiang Zhang, Qiuhong Li
{"title":"Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway.","authors":"Shengbiao Li, Yi Zhang, Tianyi Zhang, Donghui Jiang, Mi Li, Ligang Chen, Jun Jiang, Chunxiang Zhang, Qiuhong Li","doi":"10.1007/s11626-024-01005-y","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis (AS) is a prevalent cardiovascular condition, and the growth and phenotypic switch of vascular smooth muscle cells (VSMCs) play a crucial role in its development. Studies have revealed that the activation of certain transcription factors and signaling pathways can trigger these cellular changes. Consequently, targeting these pathways and pivotal molecules has emerged as a promising strategy for AS treatment. Drugs that can reverse the cellular changes in VSMCs may offer new therapeutic options for AS, marking a significant advancement. While previous research has suggested that urolithin B (Uro B) possesses anti-atherosclerotic properties, its exact mechanism remains to be fully understood, especially the effect of Uro B in VSMCs. This study discovered that Uro B can impede the proliferation and migration of VSMCs prompted by PDGF-BB, as well as their phenotypic changes, indicating that Uro B could potentially prevent AS by inhibiting the phenotypic switch of VSMCs.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-01005-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis (AS) is a prevalent cardiovascular condition, and the growth and phenotypic switch of vascular smooth muscle cells (VSMCs) play a crucial role in its development. Studies have revealed that the activation of certain transcription factors and signaling pathways can trigger these cellular changes. Consequently, targeting these pathways and pivotal molecules has emerged as a promising strategy for AS treatment. Drugs that can reverse the cellular changes in VSMCs may offer new therapeutic options for AS, marking a significant advancement. While previous research has suggested that urolithin B (Uro B) possesses anti-atherosclerotic properties, its exact mechanism remains to be fully understood, especially the effect of Uro B in VSMCs. This study discovered that Uro B can impede the proliferation and migration of VSMCs prompted by PDGF-BB, as well as their phenotypic changes, indicating that Uro B could potentially prevent AS by inhibiting the phenotypic switch of VSMCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis. Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway. Using cationic liposomes as carriers for long dsRNA to trigger an antiviral response in rainbow trout cell lines. Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods. Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1