TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2025-01-13 DOI:10.1093/mam/ozae123
Xiao-Han Li, Song-Hee Lee, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Xiang-Shun Cui
{"title":"TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.","authors":"Xiao-Han Li, Song-Hee Lee, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Xiang-Shun Cui","doi":"10.1093/mam/ozae123","DOIUrl":null,"url":null,"abstract":"<p><p>The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3. TBX3 expression gradually increases during early embryonic development. TBX3 knockdown resulted in decreased in the rate of four-cell and blastocyst. Depletion of TBX3 decreased the level of H3K9Ac/H3K27Ac and decreased ZGA gene expression at the four-cell stage. Furthermore, TBX3 knockdown led to a decrease in ZSACN4 protein level, DNMT1 and intracellular 5mc levels were increased, and then induced telomeres shorten and DNA damaged. Additionally, TBX3 knockdown significantly decreased histone acetylation and pluripotency genes NANOG/OCT4 expression in blastocysts. TBX3 knockdown induced apoptosis in blastocysts. Taken together, TBX3 regulate histone acetylation and play important roles in zygotic genome activation and early embryonic development in pigs.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3. TBX3 expression gradually increases during early embryonic development. TBX3 knockdown resulted in decreased in the rate of four-cell and blastocyst. Depletion of TBX3 decreased the level of H3K9Ac/H3K27Ac and decreased ZGA gene expression at the four-cell stage. Furthermore, TBX3 knockdown led to a decrease in ZSACN4 protein level, DNMT1 and intracellular 5mc levels were increased, and then induced telomeres shorten and DNA damaged. Additionally, TBX3 knockdown significantly decreased histone acetylation and pluripotency genes NANOG/OCT4 expression in blastocysts. TBX3 knockdown induced apoptosis in blastocysts. Taken together, TBX3 regulate histone acetylation and play important roles in zygotic genome activation and early embryonic development in pigs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TBX3对猪受精卵基因组激活和胚胎发育至关重要。
多能性相关的T-box家族转录因子TBX3维持mESC自我更新,并在包括心脏、乳腺、四肢和肺在内的几种组织的发育中发挥关键作用。然而,TBX3在猪着床前胚胎发育中的作用尚不清楚。在我们的研究中,我们通过注射dsRNA敲低TBX3来探索TBX3的功能。TBX3的表达在胚胎发育早期逐渐增加。TBX3基因敲低导致四细胞和囊胚率下降。TBX3的缺失降低了H3K9Ac/H3K27Ac水平,降低了ZGA基因在四细胞期的表达。TBX3基因敲低导致ZSACN4蛋白水平降低,DNMT1和胞内5mc水平升高,导致端粒缩短和DNA损伤。此外,TBX3基因敲除显著降低了胚泡中组蛋白乙酰化和多能基因NANOG/OCT4的表达。TBX3基因敲低诱导囊胚细胞凋亡。综上所述,TBX3调节组蛋白乙酰化,在猪受精卵基因组激活和早期胚胎发育中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
Retraction of: Automated Tools to Advance High-Resolution Imaging in Liquid. Retraction of: Structural Insights of the SARS-CoV-2 Nucleocapsid Protein: Implications for the Inner-workings of Rapid Antigen Tests. A Novel Self-Opening Transfer Shuttle for the Transfer of Air-Sensitive Sample to Scanning Electron Microscopy. Continuity of Mitochondrial Budding: Insights from BS-C-1 Cells by In Situ Cryo-electron Tomography. Direct Evidence of Anomalous Peierls Transition-Induced Charge Density Wave Order at Room Temperature in Metallic NaRu2O4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1