Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2025-01-07 DOI:10.1093/molbev/msae269
John F McDonald
{"title":"Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology.","authors":"John F McDonald","doi":"10.1093/molbev/msae269","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae269","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Persistent, Private and Mobile genes: a model for gene dynamics in evolving pangenomes. Selection can favor a recombination landscape that limits polygenic adaptation. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Dampened TLR2-mediated Inflammatory Signaling in Bats. Sex Chromosome Turnovers and Stability in Snakes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1