{"title":"ClaPEPCK4: target gene for breeding innovative watermelon germplasm with low malic acid and high sweetness.","authors":"Congji Yang, Jiale Shi, Yuanyuan Qin, ShengQi Hua, Jiancheng Bao, Xueyan Liu, Yuqi Peng, Yige Gu, Wei Dong","doi":"10.1080/21645698.2025.2452702","DOIUrl":null,"url":null,"abstract":"<p><p>Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology. In this study, we measured the TSS and pH of six watermelon varieties at four growth nodes. The TSS content was very low at 10 DAP and accumulated rapidly at 18, 26, and 34 DAP. Three phosphoenolpyruvate carboxykinase (<i>PEPCK</i>) genes of watermelon were identified and analyzed. The <i>ClaPEPCK4</i> expression was inversely proportional to malate content variations in fruits. In transgenic watermelon plants, overexpressing the <i>ClaPEPCK4</i> gene, malic acid content markedly decreased. In the knockout transgenic watermelon plants, two SNP mutations and one base deletion occurred in the <i>ClaPEPCK4</i> gene, with the malic acid content in the leaves increasing considerably and the PEPCK enzyme activity reduced to half of the wild-type. It is interesting that the <i>ClaPEPCK4</i> gene triggered the closure of leaf stomata under dark conditions in the knockout transgenic plants, which indicated its involvement in stomatal movement. In conclusion, this study provides a gene target <i>ClaPEPCK4</i> for creating innovative new high-sweetness watermelon varieties.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"156-170"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2025.2452702","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology. In this study, we measured the TSS and pH of six watermelon varieties at four growth nodes. The TSS content was very low at 10 DAP and accumulated rapidly at 18, 26, and 34 DAP. Three phosphoenolpyruvate carboxykinase (PEPCK) genes of watermelon were identified and analyzed. The ClaPEPCK4 expression was inversely proportional to malate content variations in fruits. In transgenic watermelon plants, overexpressing the ClaPEPCK4 gene, malic acid content markedly decreased. In the knockout transgenic watermelon plants, two SNP mutations and one base deletion occurred in the ClaPEPCK4 gene, with the malic acid content in the leaves increasing considerably and the PEPCK enzyme activity reduced to half of the wild-type. It is interesting that the ClaPEPCK4 gene triggered the closure of leaf stomata under dark conditions in the knockout transgenic plants, which indicated its involvement in stomatal movement. In conclusion, this study provides a gene target ClaPEPCK4 for creating innovative new high-sweetness watermelon varieties.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments