Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Signal Transduction and Targeted Therapy Pub Date : 2025-01-15 DOI:10.1038/s41392-024-02096-5
Pengju Wang, Yiyi Wang, Xiaojuan Zhao, Rui Zheng, Yiting Zhang, Ruotong Meng, Hao Dong, Sixin Liang, Xinyi He, Yang Song, Haichuan Su, Bo Yan, An-Gang Yang, Lintao Jia
{"title":"Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells","authors":"Pengju Wang, Yiyi Wang, Xiaojuan Zhao, Rui Zheng, Yiting Zhang, Ruotong Meng, Hao Dong, Sixin Liang, Xinyi He, Yang Song, Haichuan Su, Bo Yan, An-Gang Yang, Lintao Jia","doi":"10.1038/s41392-024-02096-5","DOIUrl":null,"url":null,"abstract":"<p>The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs. While these reconstituted CARs conferred sufficient antigen-specific cytolytic activity on equipped T cells, they elicited low tonic signal, ameliorated the exhaustion and promoted memory differentiation of these cells. Intriguingly, the CD3ε-derived ICD outperformed others in generation of CAR-T cells that produced minimized cytokines. Mechanistically, CD3ε-based CARs displayed a restrained cytomembrane expression on engineered T cells, which was ascribed to endoplasmic reticulum retention mediated by the carboxyl terminal basic residues. The present study demonstrated the applicability of CAR reconstitution using signaling modules from different CD3 subunits, and depicted a novel pattern of CAR expression that reduces cytokine release, thus paving a way for preparation of CAR-T cells displaying improved safety and persistence against diverse tumor antigens.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"28 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-02096-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs. While these reconstituted CARs conferred sufficient antigen-specific cytolytic activity on equipped T cells, they elicited low tonic signal, ameliorated the exhaustion and promoted memory differentiation of these cells. Intriguingly, the CD3ε-derived ICD outperformed others in generation of CAR-T cells that produced minimized cytokines. Mechanistically, CD3ε-based CARs displayed a restrained cytomembrane expression on engineered T cells, which was ascribed to endoplasmic reticulum retention mediated by the carboxyl terminal basic residues. The present study demonstrated the applicability of CAR reconstitution using signaling modules from different CD3 subunits, and depicted a novel pattern of CAR expression that reduces cytokine release, thus paving a way for preparation of CAR-T cells displaying improved safety and persistence against diverse tumor antigens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
期刊最新文献
Cancer cell reprogramming: turning the enemy into an ally Real‐world effectiveness and safety of oral azvudine versus nirmatrelvir‒ritonavir (Paxlovid) in hospitalized patients with COVID-19: a multicenter, retrospective, cohort study Safety and efficacy of trifluridine/tipiracil +/− bevacizumab plus XB2001 (anti-IL-1α antibody): a single-center phase 1 trial Tissue-resident immune cells: from defining characteristics to roles in diseases Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1