A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Signal Transduction and Targeted Therapy Pub Date : 2025-02-20 DOI:10.1038/s41392-025-02169-z
Huan Xiao, Aoxue Wang, Wen Shuai, Yuping Qian, Chengyong Wu, Xin Wang, Panpan Yang, Qian Sun, Guan Wang, Liang Ouyang, Qiu Sun
{"title":"A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy","authors":"Huan Xiao, Aoxue Wang, Wen Shuai, Yuping Qian, Chengyong Wu, Xin Wang, Panpan Yang, Qian Sun, Guan Wang, Liang Ouyang, Qiu Sun","doi":"10.1038/s41392-025-02169-z","DOIUrl":null,"url":null,"abstract":"<p>Despite significant advancements in kinase-targeted therapy, the emergence of acquired drug resistance to targets such as KRAS and MEK remains a challenge. Extracellular-regulated kinase 1/2 (ERK1/2), positioned at the terminus of this pathway, is highly conserved and less susceptible to mutations, thereby garnering attention as a crucial therapeutical target. However, attempts to use monotherapies that target ERK1/2 have achieved only limited clinical success, mainly due to the issues of limited efficacy and the emergence of drug resistance. Herein, we present a proof of concept that extracellular-regulated kinase 5 (ERK5) acts as a compensatory pathway after ERK1/2 inhibition in triple-negative breast cancer (TNBC). By utilizing the principle of polypharmacology, we computationally designed <b>SKLB-D18</b>, a first-in-class molecule that selectively targets ERK1/2 and ERK5, with nanomolar potency and high specificity for both targets. <b>SKLB-D18</b> demonstrated excellent tolerability in mice and demonstrated superior in vivo anti-tumor efficacy, not only exceeding the existing clinical ERK1/2 inhibitor BVD-523, but also the combination regimen of BVD-523 and the ERK5 inhibitor XMD8-92. Mechanistically, we showed that <b>SKLB-D18</b>, as an autophagy agonist, played a role in mammalian target of rapamycin (mTOR)/70 ribosomal protein S6 kinase (p70S6K) and nuclear receptor coactivator 4 (NCOA4)-mediated ferroptosis, which may mitigate multidrug resistance.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"11 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02169-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advancements in kinase-targeted therapy, the emergence of acquired drug resistance to targets such as KRAS and MEK remains a challenge. Extracellular-regulated kinase 1/2 (ERK1/2), positioned at the terminus of this pathway, is highly conserved and less susceptible to mutations, thereby garnering attention as a crucial therapeutical target. However, attempts to use monotherapies that target ERK1/2 have achieved only limited clinical success, mainly due to the issues of limited efficacy and the emergence of drug resistance. Herein, we present a proof of concept that extracellular-regulated kinase 5 (ERK5) acts as a compensatory pathway after ERK1/2 inhibition in triple-negative breast cancer (TNBC). By utilizing the principle of polypharmacology, we computationally designed SKLB-D18, a first-in-class molecule that selectively targets ERK1/2 and ERK5, with nanomolar potency and high specificity for both targets. SKLB-D18 demonstrated excellent tolerability in mice and demonstrated superior in vivo anti-tumor efficacy, not only exceeding the existing clinical ERK1/2 inhibitor BVD-523, but also the combination regimen of BVD-523 and the ERK5 inhibitor XMD8-92. Mechanistically, we showed that SKLB-D18, as an autophagy agonist, played a role in mammalian target of rapamycin (mTOR)/70 ribosomal protein S6 kinase (p70S6K) and nuclear receptor coactivator 4 (NCOA4)-mediated ferroptosis, which may mitigate multidrug resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
期刊最新文献
Invasion and metastasis in cancer: molecular insights and therapeutic targets Precise targeting of transcriptional co-activators YAP/TAZ annihilates chemoresistant brCSCs by alteration of their mitochondrial homeostasis A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy Population-level analyses identify host and environmental variables influencing the vaginal microbiome Breast cancer: pathogenesis and treatments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1