The Unknowns of the Diffuse Supernova Neutrino Background Hinder New Physics Searches

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-01-15 DOI:10.1088/1475-7516/2025/01/062
Miller MacDonald, Pablo Martínez-Miravé and Irene Tamborra
{"title":"The Unknowns of the Diffuse Supernova Neutrino Background Hinder New Physics Searches","authors":"Miller MacDonald, Pablo Martínez-Miravé and Irene Tamborra","doi":"10.1088/1475-7516/2025/01/062","DOIUrl":null,"url":null,"abstract":"Neutrinos traveling over cosmic distances are ideal probes of new physics. We leverage on the approaching detection of the diffuse supernova neutrino background (DSNB) to explore whether, if the DSNB showed departures from theoretical predictions, we could attribute such modifications to new physics unequivocally. In order to do so, we focus on visible neutrino decay. Many of the signatures from neutrino decay are degenerate with astrophysical unknowns entering the DSNB modeling. Next generation neutrino observatories, such as Hyper-Kamiokande, JUNO, as well as DUNE, will set stringent limits on a neutrino lifetime over mass ratio τ/m ∼ 109–1010 s eV-1 at 90% C.L., if astrophysical uncertainties and detector backgrounds were to be fully under control. However, if the lightest neutrino is almost massless and the neutrino mass ordering is normal, constraining visible decay will not be realistically possible in the coming few decades. We also assess the challenges of distinguishing among different new physics scenarios (such as visible decay, invisible decay, and quasi-Dirac neutrinos), all leading up to similar signatures in the DSNB. This work shows that the DSNB potential for probing new physics strongly depends on an improved understanding of the experimental backgrounds at next generation neutrino observatories as well as progress in the DSNB modeling.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"40 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/062","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrinos traveling over cosmic distances are ideal probes of new physics. We leverage on the approaching detection of the diffuse supernova neutrino background (DSNB) to explore whether, if the DSNB showed departures from theoretical predictions, we could attribute such modifications to new physics unequivocally. In order to do so, we focus on visible neutrino decay. Many of the signatures from neutrino decay are degenerate with astrophysical unknowns entering the DSNB modeling. Next generation neutrino observatories, such as Hyper-Kamiokande, JUNO, as well as DUNE, will set stringent limits on a neutrino lifetime over mass ratio τ/m ∼ 109–1010 s eV-1 at 90% C.L., if astrophysical uncertainties and detector backgrounds were to be fully under control. However, if the lightest neutrino is almost massless and the neutrino mass ordering is normal, constraining visible decay will not be realistically possible in the coming few decades. We also assess the challenges of distinguishing among different new physics scenarios (such as visible decay, invisible decay, and quasi-Dirac neutrinos), all leading up to similar signatures in the DSNB. This work shows that the DSNB potential for probing new physics strongly depends on an improved understanding of the experimental backgrounds at next generation neutrino observatories as well as progress in the DSNB modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
漫射超新星中微子背景的未知阻碍了新的物理学研究
穿越宇宙距离的中微子是探索新物理学的理想探测器。我们利用即将到来的弥漫性超新星中微子背景(DSNB)探测来探索,如果DSNB显示出与理论预测的偏离,我们是否可以明确地将这种修改归因于新的物理。为了做到这一点,我们专注于可见中微子的衰变。中微子衰变的许多特征都是简并的,因为天体物理学的未知因素进入了DSNB模型。如果要完全控制天体物理不确定性和探测器背景,下一代中微子天文台,如超级神冈、朱诺和DUNE,将对90% C.L下质量比τ/m ~ 109 - 1010s eV-1的中微子寿命设定严格的限制。然而,如果最轻的中微子几乎是无质量的,并且中微子的质量顺序是正常的,那么在未来几十年里,限制可见的衰变将是不现实的。我们还评估了区分不同的新物理场景(如可见衰变、不可见衰变和准狄拉克中微子)的挑战,所有这些都导致了DSNB中类似的特征。这项工作表明,DSNB探测新物理学的潜力在很大程度上取决于对下一代中微子天文台实验背景的更好理解,以及DSNB建模的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Spacetime surgery for black hole fireworks Distinct photon-ALP propagation modes Ultra slow-roll with a black hole ANNZ+: an enhanced photometric redshift estimation algorithm with applications on the PAU survey Hot Casimir wormholes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1