Anca Mazare, Mahmut Hakan Ulubas, Hyesung Kim, Iana Fomicheva, George Sarau, Silke H. Christiansen, Wolfgang H. Goldmann, Alexander B. Tesler
{"title":"Binding Kinetics of Self-Assembled Monolayers of Fluorinated Phosphate Ester on Metal Oxides for Underwater Aerophilicity","authors":"Anca Mazare, Mahmut Hakan Ulubas, Hyesung Kim, Iana Fomicheva, George Sarau, Silke H. Christiansen, Wolfgang H. Goldmann, Alexander B. Tesler","doi":"10.1021/acs.langmuir.4c04320","DOIUrl":null,"url":null,"abstract":"The term “aerophilic surface” is used to describe superhydrophobic surfaces in the Cassie–Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge. This study demonstrates that fluorinated phosphate ester, with a surface tension as low as 15.31 mN m<sup>–1</sup>, can form a self-assembled monolayer on metal oxide substrates within seconds using a facile wet-chemical approach. X-ray photoelectron spectroscopy was used to analyze the formed self-assembled monolayers. Using nanotubular morphology as a rough substrate, we demonstrate the rapid formation of a superhydrophobic surface with a trapped air layer underwater.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"118 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The term “aerophilic surface” is used to describe superhydrophobic surfaces in the Cassie–Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge. This study demonstrates that fluorinated phosphate ester, with a surface tension as low as 15.31 mN m–1, can form a self-assembled monolayer on metal oxide substrates within seconds using a facile wet-chemical approach. X-ray photoelectron spectroscopy was used to analyze the formed self-assembled monolayers. Using nanotubular morphology as a rough substrate, we demonstrate the rapid formation of a superhydrophobic surface with a trapped air layer underwater.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).