Bangbang Nie, Yihong Zhu, Zongxu Luo, Jingjiang Qiu, Mingfu Zhu, Ming Zhai, Guobi Chai, Xiangming Li, Jinyou Shao, Ronghan Wei
{"title":"Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control","authors":"Bangbang Nie, Yihong Zhu, Zongxu Luo, Jingjiang Qiu, Mingfu Zhu, Ming Zhai, Guobi Chai, Xiangming Li, Jinyou Shao, Ronghan Wei","doi":"10.1021/acs.langmuir.4c04687","DOIUrl":null,"url":null,"abstract":"The rapid development of wearable technology, flexible electronics, and human–machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex). This sensor adopted an immersion coating process in which MWCNTs were conformally deposited on SPF, and Ecoflex was filled into the fiber interstices, completing the encapsulation and filling of the SPF to construct a stable three-dimensional conductive network. Thanks to the filling of Ecoflex, contact between conductive fibers during the stretching process was avoided, resulting in a significant change in the resistance. The sensitivity of the sensor reached 54.84, which is 10 times higher than before the Ecoflex filling with a stretchable strain range of up to 70%. The encapsulation of Ecoflex also prevented the detachment of MWCNTs on the fibers during stretching, improving the mechanical stability. The sensor can be easily attached to the surface of human skin to rapidly monitor various human motion signals. Furthermore, the sensor was related to the manipulator through wireless Bluetooth to realize the intelligent control of the manipulator. This work not only provided a more precise data monitoring method for medical and motion analysis fields but also offered an innovative solution for manipulator control.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04687","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of wearable technology, flexible electronics, and human–machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex). This sensor adopted an immersion coating process in which MWCNTs were conformally deposited on SPF, and Ecoflex was filled into the fiber interstices, completing the encapsulation and filling of the SPF to construct a stable three-dimensional conductive network. Thanks to the filling of Ecoflex, contact between conductive fibers during the stretching process was avoided, resulting in a significant change in the resistance. The sensitivity of the sensor reached 54.84, which is 10 times higher than before the Ecoflex filling with a stretchable strain range of up to 70%. The encapsulation of Ecoflex also prevented the detachment of MWCNTs on the fibers during stretching, improving the mechanical stability. The sensor can be easily attached to the surface of human skin to rapidly monitor various human motion signals. Furthermore, the sensor was related to the manipulator through wireless Bluetooth to realize the intelligent control of the manipulator. This work not only provided a more precise data monitoring method for medical and motion analysis fields but also offered an innovative solution for manipulator control.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).