Sodium Ion Diffusion Behavior in Multiple Open/Closed Pore Ratios of Novel β-Cyclodextrin-Derived Hard Carbon Anode Materials

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-01-15 DOI:10.1021/acs.nanolett.4c04569
Shuangshuang Ao, Xuewen Yu, Xiaojie Wang, Dianbo Ruan, Zhijun Qiao, Yuzuo Wang
{"title":"Sodium Ion Diffusion Behavior in Multiple Open/Closed Pore Ratios of Novel β-Cyclodextrin-Derived Hard Carbon Anode Materials","authors":"Shuangshuang Ao, Xuewen Yu, Xiaojie Wang, Dianbo Ruan, Zhijun Qiao, Yuzuo Wang","doi":"10.1021/acs.nanolett.4c04569","DOIUrl":null,"url":null,"abstract":"Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na<sup>+</sup> in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores. The as-obtained β-cyclodextrin-derived spherical hard carbon has a much greater specific surface area (129 m<sup>2</sup> g<sup>–1</sup>) than the pristine sample (2.91 m<sup>2</sup> g<sup>–1</sup>) but a similar initial Coulombic efficiency. Additionally, the plateau region still exists when the current density is at 30 C (7.5 A g<sup>–1</sup>), contributing to a high capacity of 179 mAh g<sup>–1</sup>. This study provides a meaningful promotion to kinetics of hard carbon at the low-voltage region.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"2 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04569","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na+ in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores. The as-obtained β-cyclodextrin-derived spherical hard carbon has a much greater specific surface area (129 m2 g–1) than the pristine sample (2.91 m2 g–1) but a similar initial Coulombic efficiency. Additionally, the plateau region still exists when the current density is at 30 C (7.5 A g–1), contributing to a high capacity of 179 mAh g–1. This study provides a meaningful promotion to kinetics of hard carbon at the low-voltage region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Photo-Rechargeable Sodium-Ion Batteries with a Two-Dimensional MoSe2 Crystal Cathode Metallic Electro-optic Effect in Gapped Bilayer Graphene Sodium Ion Diffusion Behavior in Multiple Open/Closed Pore Ratios of Novel β-Cyclodextrin-Derived Hard Carbon Anode Materials Tungsten Bronze W3Nb2O14 Nanorod: The Low-Strain and Preferred Orientation Enables Long-Life for High-Rate Lithium-Ion Storage All-Optical Single-Channel Plasmonic Logic Gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1