{"title":"Climate change aggravated wildfire behaviour in the Iberian Peninsula in recent years","authors":"Martín Senande-Rivera, Damián Insua-Costa, Gonzalo Miguez-Macho","doi":"10.1038/s41612-025-00906-3","DOIUrl":null,"url":null,"abstract":"<p>Climate change is considered to affect wildfire spread both by increasing fuel dryness and by altering vegetation mass and structure. However, the direct effect of global warming on wildfires is hard to quantify due to the multiple non-climatic factors involved in their ignition and spread. By combining wildfire observations with the latest generation of climate models, here we show that more than half of the large wildfires (area>500 ha) occurring in the Iberian Peninsula between 2001 and 2021 present a significant increase in the rate of spread with respect to what it would have been in the pre-industrial period, attributable to global warming. The average acceleration of the rate of spread due to increased fuel dryness is between 2.0% and 8.3%, whereas the influence of enhanced vegetation growth since the pre-industrial period could potentially be even higher than the direct impact of temperature increase in fuel conditions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"45 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00906-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is considered to affect wildfire spread both by increasing fuel dryness and by altering vegetation mass and structure. However, the direct effect of global warming on wildfires is hard to quantify due to the multiple non-climatic factors involved in their ignition and spread. By combining wildfire observations with the latest generation of climate models, here we show that more than half of the large wildfires (area>500 ha) occurring in the Iberian Peninsula between 2001 and 2021 present a significant increase in the rate of spread with respect to what it would have been in the pre-industrial period, attributable to global warming. The average acceleration of the rate of spread due to increased fuel dryness is between 2.0% and 8.3%, whereas the influence of enhanced vegetation growth since the pre-industrial period could potentially be even higher than the direct impact of temperature increase in fuel conditions.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.