Regulative Fe-3d Orbitals via Lying-Down Conformation of Metalorganic Molecules-Axially Coordinated MXene for Rechargeable Zn–Air Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-15 DOI:10.1002/adfm.202422254
Khoa Dang Tran, Thanh Hai Nguyen, Duy Thanh Tran, Abhisek Majumdar, Van An Dinh, Thi Thuy Nga Ta, Chung-Li Dong, Nam Hoon Kim, Joong Hee Lee
{"title":"Regulative Fe-3d Orbitals via Lying-Down Conformation of Metalorganic Molecules-Axially Coordinated MXene for Rechargeable Zn–Air Batteries","authors":"Khoa Dang Tran, Thanh Hai Nguyen, Duy Thanh Tran, Abhisek Majumdar, Van An Dinh, Thi Thuy Nga Ta, Chung-Li Dong, Nam Hoon Kim, Joong Hee Lee","doi":"10.1002/adfm.202422254","DOIUrl":null,"url":null,"abstract":"A bifunctional electrocatalyst is developed, exhibiting high catalytic activity and reversibility for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through a regulative Fe d-orbital engineering strategy. In this strategy, iron phthalocyanine organic molecule (FeOM) crystals are axially coordinated onto multilayer Mo<sub>2</sub>CT<sub>x</sub> MXene (FeOM-Mo<sub>2</sub>CT<sub>x</sub>), adopting a lying-down conformation. This hybridization fosters unique electronic guest–host interactions, with FeOM donating charge to Mo<sub>2</sub>CT<sub>x</sub> via Fe−O bonding, leading to symmetry breaking in electronic distribution and modified delocalization of Fe-3d charge, accompanied by a Fe(II) spin-state transition. These transformations enhance the adsorption and desorption toward oxygenated intermediates, optimizing the <sup>*</sup>OOH−<sup>*</sup>O transition to boost the reversibility of ORR and OER kinetics. The FeOM-Mo<sub>2</sub>CT<sub>x</sub> exhibits a favorable ORR half-wave potential of 0.961 V and a minimal OER overpotential of 349 mV at 10 mA cm<sup>−2</sup> in 1.0 <span>m</span> KOH. The assembled aqueous zinc-air battery (ZAB) achieves a peak power density of 155.3 mW cm<sup>−2</sup> and exceptional charge–discharge durability over 1500 h, outperforming a conventional (Pt/C + RuO<sub>2</sub>) system. Overall, the findings underscore the significance of electronic structural engineering of FeOM with Mo<sub>2</sub>CT<sub>x</sub>, paving the way for innovative air cathodes in the development of rechargeable ZABs with enhanced performance and cost-effectiveness.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A bifunctional electrocatalyst is developed, exhibiting high catalytic activity and reversibility for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through a regulative Fe d-orbital engineering strategy. In this strategy, iron phthalocyanine organic molecule (FeOM) crystals are axially coordinated onto multilayer Mo2CTx MXene (FeOM-Mo2CTx), adopting a lying-down conformation. This hybridization fosters unique electronic guest–host interactions, with FeOM donating charge to Mo2CTx via Fe−O bonding, leading to symmetry breaking in electronic distribution and modified delocalization of Fe-3d charge, accompanied by a Fe(II) spin-state transition. These transformations enhance the adsorption and desorption toward oxygenated intermediates, optimizing the *OOH−*O transition to boost the reversibility of ORR and OER kinetics. The FeOM-Mo2CTx exhibits a favorable ORR half-wave potential of 0.961 V and a minimal OER overpotential of 349 mV at 10 mA cm−2 in 1.0 m KOH. The assembled aqueous zinc-air battery (ZAB) achieves a peak power density of 155.3 mW cm−2 and exceptional charge–discharge durability over 1500 h, outperforming a conventional (Pt/C + RuO2) system. Overall, the findings underscore the significance of electronic structural engineering of FeOM with Mo2CTx, paving the way for innovative air cathodes in the development of rechargeable ZABs with enhanced performance and cost-effectiveness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节性铁 d-轨道工程策略,开发出一种双功能电催化剂,在氧还原反应(ORR)和氧进化反应(OER)中表现出高催化活性和可逆性。在这一策略中,铁酞菁有机分子(FeOM)晶体轴向配位到多层 Mo2CTx MXene(FeOM-Mo2CTx)上,采用俯卧构象。这种杂化促进了独特的电子客体-宿主相互作用,FeOM 通过 Fe-O 键向 Mo2CTx 捐献电荷,从而导致电子分布的对称性破坏和 Fe-3d 电荷的修正脱ocalization,并伴随着 Fe(II) 自旋态转变。这些转变增强了对含氧中间体的吸附和解吸,优化了 *OOH-*O 转变,从而提高了 ORR 和 OER 动力学的可逆性。在 1.0 m KOH 中,FeOM-Mo2CTx 的 ORR 半波电位为 0.961 V,在 10 mA cm-2 的条件下,OER 过电位为 349 mV。组装后的锌空气水电池(ZAB)的峰值功率密度达到 155.3 mW cm-2,充放电耐久性超过 1500 h,优于传统的(Pt/C + RuO2)系统。总之,这些发现强调了含有 Mo2CTx 的 FeOM 电子结构工程的重要性,为开发性能更强、更具成本效益的可充电 ZAB 的创新空气阴极铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
An Endothelium-Mimicking, Healable Hydrogel Shield for Bioprosthetic Heart Valve with Enhanced Intravascular Biocompatibility Regulative Fe-3d Orbitals via Lying-Down Conformation of Metalorganic Molecules-Axially Coordinated MXene for Rechargeable Zn–Air Batteries Negative Swelling and Mechanical Self-Enhancement TAFe@PVA Photothermal Hydrogel Mediated Via Semi-Crystallization for Medical Implants A Novel Full-Band Microwave Absorber Based on Scattering Enhanced Prism-Honeycomb Nested Structure Molecular Etching-Derived High-Brightness NIR-II Gold Nanoclusters for High-Resolution Bioimaging and Photothermal Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1